Planning of Earthwork Processes Using Discrete Event Simulation

  • Johannes Wimmer
  • Tim Horenburg
  • Willibald A. Günthner
  • Yang Ji
  • André Borrmann


The planning of earthworks represents a complex task. The use of different machine configurations as well as alternative scenarios in the site layout (e.g. transport routes and temporal storage areas) must be evaluated and dimensioned consistently. Wrong decisions can lead to delays or an uneconomic solution and hence increase the costs and project duration. In practice, this planning process is based on the experience and knowledge of the persons in charge; however, decision support tools are not used in the planning of excavation and transportation equipment despite their central importance. Therefore an approach has been developed to support the planning of construction processes in earthworks by applying discrete event simulation. For this purpose, methods for calculating the performance of earthmoving equipment were extended based on statistical components, adapted for simulation, and implemented in a module library. Furthermore, the simulation tool has been coupled with a mathematical optimization procedure to reduce the cost of transport in earthworks by minimizing haul times.


Greedy Algorithm Construction Process Construction Site Linear Optimization Discrete Event Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bau07]
    Bauer, H.: Baubetrieb. Springer, Heidelberg (2007)Google Scholar
  2. [Cha07]
    Chahrour, R.: Integration von CAD und Simulation auf Basis von Produktmodellen im Erdbau. Kassel Univ. Press, Kassel (2007)Google Scholar
  3. [DD10]
    Deutsches Institut für Normung; Deutscher Vergabe- und Vertragsausschuss für Bauleistungen: VOB; Beuth, Berlin, Deutsches Institut für Normung; Deutscher Vergabe- und Vertragsausschuss für Bauleistungen (2010)Google Scholar
  4. [For-09]
    ForBAU: Zwischenbericht des Forschungsverbundes "Virtuelle Baustelle", Institute for Materials Handling, Materials Flow, Logistics. Technische Universität München, München (2009)Google Scholar
  5. [Fra99]
    Franz, V.: Simulation von Bauprozessen mit Hilfe von Petri-Netzen. In: Fortschritte in der Simulationstechnik, Weimar (1999)Google Scholar
  6. [Gir03]
    Girmscheid, G.: Leistungsermittlung für Baumaschinen und Bauprozesse. Springer, Berlin (2003)Google Scholar
  7. [GKF+08]
    Günthner, W.A., Kessler, S., Frenz, T., Peters, B., Walther, K.: Einsatz einer Baumaschinendatenbank (EIS) bei der Bayerischen BauAkademie. In: Tiefbau, Jahrgang 52, vol. 12, pp. 736–738 (2008)Google Scholar
  8. [GKFW09]
    Günthner, W.A., Kessler, S., Frenz, T., Wimmer, J.: Transportlogistikplanung im Erdbau. Technische Universität München, München (2009)Google Scholar
  9. [Hüs92]
    Hüster, F.: Leistungsberechnung der Baumaschinen. Werner, Düsseldorf (1992)Google Scholar
  10. [JLOB08]
    Ji, Y., Lukas, K., Obergriesser, M., Borrmann, A.: Entwicklung integrierter 3D-Trassenproduktmodelle für die Bauablaufsimulation. In: Tagungsband des 20. Forum Bauinformatik, Dresden (2008)Google Scholar
  11. [KBSB07]
    König, M., Beißert, U., Steinhauer, D., Bargstädt, H.-J.: Constraint-Based Simulation of Outfitting Processes in Shipbuilding and Civil Engineering; In: 6th EUROSIM Congress on Modeling and Simulation, Ljubljana, Slovenia (2007)Google Scholar
  12. [MI99]
    Martinez, J.C., Ioannou, P.G.: General-Purpose Systems for Effective Construction Simulation 125(4), 265–276 (1999)Google Scholar
  13. [RIB10]
    RIB Software AG: transparent, (accessed on August 12, 2010)
  14. [Web07]
    Weber, J.: Simulation von Logistikprozessen auf Baustellen auf Basis von 3D-CAD Daten, Universität Dortmund, Dortmund (2007)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Johannes Wimmer
    • 1
  • Tim Horenburg
    • 1
  • Willibald A. Günthner
    • 1
  • Yang Ji
    • 1
  • André Borrmann
    • 1
  1. 1.fml - Lehrstuhl für Fördertechnik Materialfluss LogistikTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations