Advertisement

Approach of Genetic Algorithms with Grouping into Species Optimized with Predator-Prey Method for Solving Multimodal Problems

  • Pablo Seoane
  • Marcos Gestal
  • Julián Dorado
  • J. Ramón Rabuñal
  • Daniel Rivero
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)

Abstract

Over recent years, Genetic Algorithms have proven to be an appropriate tool for solving certain problems. However, it does not matter if the search space has several valid solutions, as their classic approach is insufficient. To this end, the idea of dividing the individuals into species has been successfully raised. However, this solution is not free of drawbacks, such as the emergence of redundant species, overlapping or performance degradation by significantly increasing the number of individuals to be evaluated. This paper presents the implementation of a method based on the predator-prey technique, with the aim of providing a solution to the problem, as well as a number of examples to prove its effectiveness.

Keywords

Genetic Algorithms Multimodal Problems Species Evaluation Predator-Prey Approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)Google Scholar
  2. 2.
    Gestal Pose, M.: Computación evolutiva para el proceso de selección de variables en espacios de búsqueda multimodales. PhD Thesis (2010)Google Scholar
  3. 3.
    Laumanns, M., Rudolph, G., Schwefel, H.P.: A spatial predator-prey approach to multi-objective optimization: A preliminary study. In: Proceedings of the Parallel Problem Solving from Nature (1998)Google Scholar
  4. 4.
    Darwin, C.: On the Origin of Species by Means of Natural Selection (1859)Google Scholar
  5. 5.
    Cortijo Bon, F.J.: Técnicas no Supervisadas: Métodos de Agrupamiento (2001)Google Scholar
  6. 6.
    Batchelor, B.G., Wilkins, B.R.: Method for location of clusters of patterns to initialise a learning machine. Electronic Letters, 481–483 (1969)Google Scholar
  7. 7.
    Chen, H., Li, M., Chen, X.: A Predator-Prey Cellular Genetic Algorithm for Dynamic Optimization Problems. In: Information Engineering and Computer Science, ICIECS (2010)Google Scholar
  8. 8.
    Blom, H., Küch, C., Losemann, K.: PEPPA: a project for evolutionary predator prey algorithms. In: GECCO 2009 (2009)Google Scholar
  9. 9.
    Kalyanmoy, D., Bhaskara, U.: Investigating predator-Prey Algorithms for Multi-Objective Optimization. Department of Mechanical Engineering Indian Institute of Technology Kanpur (2005)Google Scholar
  10. 10.
    Torn, A., Zilinskas, A.: Global Optimizacion. Springer (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pablo Seoane
    • 1
  • Marcos Gestal
    • 1
  • Julián Dorado
    • 1
  • J. Ramón Rabuñal
    • 1
  • Daniel Rivero
    • 1
  1. 1.Fac. InformáticaUniv. A CoruñaA CoruñaSpain

Personalised recommendations