A New Hybrid Firefly Algorithm for Complex and Nonlinear Problem

  • Afnizanfaizal Abdullah
  • Safaai Deris
  • Mohd Saberi Mohamad
  • Siti Zaiton Mohd Hashim
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)


Global optimization methods play an important role to solve many real-world problems. However, the implementation of single methods is excessively preventive for high dimensionality and nonlinear problems, especially in term of the accuracy of finding best solutions and convergence speed performance. In recent years, hybrid optimization methods have shown potential achievements to overcome such challenges. In this paper, a new hybrid optimization method called Hybrid Evolutionary Firefly Algorithm (HEFA) is proposed. The method combines the standard Firefly Algorithm (FA) with the evolutionary operations of Differential Evolution (DE) method to improve the searching accuracy and information sharing among the fireflies. The HEFA method is used to estimate the parameters in a complex and nonlinear biological model to address its effectiveness in high dimensional and nonlinear problem. Experimental results showed that the accuracy of finding the best solution and convergence speed performance of the proposed method is significantly better compared to those achieved by the existing methods.


Firefly Algorithm Differential Evolution hybrid optimization parameter estimation biological model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jati, G.K., Suyanto: Evolutionary Discrete Firefly Algorithm for Travelling Salesman Problem. In: Bouchachia, A. (ed.) ICAIS 2011. LNCS, vol. 6943, pp. 393–403. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Shao, Z., Gao, S., Wang, S.: A Hybrid Particle Swarm Optimization Algorithm for Vehicle Routing Problem with Stochastic Travel Time. In: Fuzzy Info. and Engineering, ASC, vol. 54, pp. 566–574 (2009)Google Scholar
  3. 3.
    dos Santos Coelho, L., Mariani, V.: Combining of Differential Evolution and Implicit Filtering Algorithm Applied to Electromagnetic Design Optimization. In: Soft Computing in Industrial Applications, ACS, vol. 39, pp. 233–240 (2007)Google Scholar
  4. 4.
    Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine Learning 3(2), 95–99 (1988)CrossRefGoogle Scholar
  5. 5.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  6. 6.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through simulated evolution. Wiley (1966)Google Scholar
  7. 7.
    Lillacci, G., Khammash, M.: Parameter estimation and model selection in computational biology. PLoS Computational Biology 6(3), e1000696 (2010)Google Scholar
  8. 8.
    Das, S., Abraham, A., Konar, A.: Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspective. SCI, vol. 116, pp. 1–38 (2008)Google Scholar
  9. 9.
    Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Łukasik, S., Żak, S.: Firefly Algorithm for Continuous Constrained Optimization Tasks. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 97–106. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Brands, C.M.J., van Boekel, M.A.J.S.: Kinetic modeling of reactions in heated monosaccharide-casein systems. Journal of agricultural and food chemistry 50(23), 6725–6739 (2002)CrossRefGoogle Scholar
  13. 13.
    Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. IEEE Transactions on Evolutionary Computation 12(1), 107–125 (2008)CrossRefGoogle Scholar
  14. 14.
    Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M., et al.: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Systems Biology 4(1), 92 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Afnizanfaizal Abdullah
    • 1
  • Safaai Deris
    • 1
  • Mohd Saberi Mohamad
    • 1
  • Siti Zaiton Mohd Hashim
    • 2
  1. 1.Artificial Intelligence and Bioinformatics Group (AIBIG), Faculty of Computer Science and Information SystemsUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Soft Computing Research Group (SCRG), Faculty of Computer Science and Information SystemsUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations