R & D Cloud CEIB: Management System and Knowledge Extraction for Bioimaging in the Cloud

  • Jose Maria Salinas
  • Maria de la Iglesia-Vaya
  • Luis Marti Bonmati
  • Rosa Valenzuela
  • Miguel Cazorla
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)

Abstract

The management system and knowledge extraction of bioimaging in the cloud (R & D Cloud CEIB) which is proposed in this article will use the services offered by the centralization of bioimaging through Valencian Biobank Medical Imaging (GIMC in Spanish) as a basis for managing and extracting knowledge from a bioimaging bank, providing that knowledge as services with high added value and expertise to the Electronic Patient History System (HSE), thus bringing the results of R & D to the patient, improving the quality of the information contained therein. R & D Cloud CEIB has four general modules: Search engine (SE), manager of clinical trials (GEBID), anonymizer (ANON) and motor knowledge (BIKE). The BIKE is the central module and through its sub modules analyses and generates knowledge to provide to the HSE through services. The technology used in R & D Cloud CEIB is completely based on Open Source.

Within the BIKE, we focus on the development of the classifier module (BIKEClassifier), which aims to establish a method for the extraction of biomarkers for bioimaging and subsequent analysis to obtain a classification in bioimaging available pools following GIMC diagnostic experience.

Keywords

Support Vector Machine Clinical Decision Support System Knowledge Engine Knowledge Extraction Capture Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage (2011) (in press)Google Scholar
  3. 3.
    Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., Smith, S.M.: Bayesian analysis of neuroimaging data in FSL. NeuroImage 45, S173–S186 (2009)CrossRefGoogle Scholar
  4. 4.
    Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(S1), 208–219 (2004)CrossRefGoogle Scholar
  5. 5.
    caBIG Community Website, https://cabig.nci.nih.gov/
  6. 6.
    Rex, D.E., Ma, J.Q., Toga, A.W.: The LONI Pipeline Processing Environment. Neuroimage 19(3), 1033–1048 (2003)CrossRefGoogle Scholar
  7. 7.
    Dinov, I.D., Lozev, K., Petrosyan, P., Liu, Z., Eggert, P., Pierce, J., Zamanyan, A., Chakrapani, S., Van Horn, J.D., Parker, D.S., Magsipoc, R., Leung, K., Gutman, B., Woods, R.P., Toga, A.W.: Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline. PLoS ONE 5(9), e13070 (2010), doi:10.1371/journal.pone.0013070Google Scholar
  8. 8.
    XNAT - Open source informatics for biomedical imaging research, http://www.xnat.org
  9. 9.
    Marcus, D.S., Olsen, T., Ramaratnam, M., Buckner, R.L.: The Extensible Neuroimaging Archive Toolkit (XNAT): An informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5(1), 11–34 (2007)Google Scholar
  10. 10.
    Manjon, J.V., Marti-Bonmati, L., Robles, M., Celda, B.: Postproceso en Imagen Medica: morfologia, funcional y molecularGoogle Scholar
  11. 11.
    Marti Bonmati, L., Alberich-Bayarri, A., Garcia-Marti, G., Sanz Requena, R., Perez Castillo, C., Carot Sierra, J.M., Manjon Herrera, J.V.: Biomarcadores de imagen, imagen cuantitativa y bioingenieria. In: Radiologia 2011 (2011)Google Scholar
  12. 12.
  13. 13.
    Downing, G.: Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints. Clin. Pharmacol. Therap. 69, 89–95 (2001)CrossRefGoogle Scholar
  14. 14.
    Schuster, D.: The opportunities and challenges of developing imaging biomarkers to study lung function and disease. Am. J. Respir. Crit. Care Med. 176, 22–30 (2007)CrossRefGoogle Scholar
  15. 15.
    Van Beers, B., Cuenod, C.A., Mart-Bonmat, L., Matos, C., Niessen, W., Padhani, A.: European Society of Radiology Working Group on Imaging Biomarkers. White paper on Imaging Biomarkers. Insights Imaging. 1, 42–45 (2010)Google Scholar
  16. 16.
    Campbell, C.: Kernel methods: a survey of current techniques. Neurocomputing 48, 63–84 (2002)MATHCrossRefGoogle Scholar
  17. 17.
    Mavroforakis, M.E., Georgiou, H.V., Dimitropoulos, N., Cavouras, D., Theodoridis, S.: Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif Intell Med. 37(2), 145–162 (2006)CrossRefGoogle Scholar
  18. 18.
    Siuly, Li, Y., Wen, P.P.: Clustering technique-based least square support vector machine for EEG signal classification. Comput Methods Programs Biomed. 104(3), 358–372 (2011)CrossRefGoogle Scholar
  19. 19.
    Bonev, B., Escolano, F., Cazorla, M.: Feature selection, mutual information, and the classification of high-dimensional patterns: Applications to image classification and microarray data analysis. Pattern Analysis and Applications 11(3-4) (August 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jose Maria Salinas
    • 1
  • Maria de la Iglesia-Vaya
    • 2
  • Luis Marti Bonmati
    • 2
  • Rosa Valenzuela
    • 2
  • Miguel Cazorla
    • 1
  1. 1.Dpto. Ciencia de la Computacion e I.A.Universidad de AlicanteAlicanteSpain
  2. 2.CEIB in Agencia Valenciana de SaludValenciaSpain

Personalised recommendations