LTL to Büchi Automata Translation: Fast and More Deterministic

  • Tomáš Babiak
  • Mojmír Křetínský
  • Vojtěch Řehák
  • Jan Strejček
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7214)


We introduce improvements in the algorithm by Gastin and Oddoux translating LTL formulae into Büchi automata via very weak alternating co-Büchi automata and generalized Büchi automata. Several improvements are based on specific properties of any formula where each branch of its syntax tree contains at least one eventually operator and at least one always operator. These changes usually result in faster translations and smaller automata. Other improvements reduce non-determinism in the produced automata. In fact, we modified all the steps of the original algorithm and its implementation known as LTL2BA. Experimental results show that our modifications are real improvements. Their implementations within an LTL2BA translation made LTL2BA very competitive with the current version of SPOT, sometimes outperforming it substantially.


Model Check Linear Temporal Logic Atomic Proposition Reduction Rule Syntax Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi Automata Translation: Fast and More Deterministic. CoRR, abs/1201.0682 (2012)Google Scholar
  2. 2.
    Cichoń, J., Czubak, A., Jasiński, A.: Minimal Büchi automata for certain classes of LTL formulas. In: DEPCOS-RELCOMEX 2009, pp. 17–24. IEEE (2009)Google Scholar
  3. 3.
    Couvreur, J.-M.: On-the-Fly Verification of Linear Temporal Logic. In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved Automata Generation for Linear Temporal Logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Dax, C., Eisinger, J., Klaedtke, F.: Mechanizing the Powerset Construction for Restricted Classes of ω-Automata. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 223–236. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Duret-Lutz, A.: LTL translation improvements in Spot. In: VECoS 2011, eWiC. British Computer Society (2011) (to appear)Google Scholar
  7. 7.
    Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library using transition-based generalized Büchi automata. In: MASCOTS 2004, pp. 76–83. IEEE (2004)Google Scholar
  8. 8.
    Ehlers, R., Finkbeiner, B.: On the Virtue of Patience: Minimizing Büchi Automata. In: van de Pol, J., Weber, M. (eds.) Model Checking Software. LNCS, vol. 6349, pp. 129–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Etessami, K., Holzmann, G.J.: Optimizing Büchi Automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Fritz, C.: Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations for Alternating Büchi Automata. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Giannakopoulou, D., Lerda, F.: From States to Transitions: Improving Translation of LTL Formulae to Büchi Automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Löding, C.: Efficient minimization of deterministic weak omega-automata. Information Processing Letters 79(3), 105–109 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC 1990, pp. 377–410. ACM Press (1990)Google Scholar
  15. 15.
    Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE (1977)Google Scholar
  16. 16.
    Rozier, K.Y., Vardi, M.Y.: LTL Satisfiability Checking. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Sebastiani, R., Tonetta, S.: “More Deterministic” vs. “Smaller” Büchi Automata for Efficient LTL Model Checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi automata. STTT 4(1), 57–70 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomáš Babiak
    • 1
  • Mojmír Křetínský
    • 1
  • Vojtěch Řehák
    • 1
  • Jan Strejček
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations