Abstract

Parity automata are a generalisation of Büchi automata that have some interesting advantages over the latter, e.g. determinisability, succinctness and the ability to express certain acceptance conditions like the intersection of a Büchi and a co-Büchi condition directly as a parity condition. Decision problems like universality and inclusion for such automata are PSPACE-complete and have originally been tackled via explicit complementation only. Ramsey-based methods are a later development that avoids explicit complementation but relies on an application of Ramsey’s Theorem for its correctness. In this paper we develop new and explicit Ramsey-based algorithms for the universality and inclusion problem for nondeterministic parity automata. We compare them to Ramsey-based algorithms which are obtained from translating parity automata into Büchi automata first and then applying the known Ramsey-based analysis procedures to the resulting automata. We show that the speed-up in the asymptotic worst-case gained through the new and direct methods is exponential in the number of priorities in the parity automata. We also show that the new algorithms are much more efficient in practice.

Keywords

Temporal Logic Regular Language Inclusion Problem Complementation Problem Inclusion Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdulla, P.A., Chen, Y.-F., Clemente, L., Holík, L., Hong, C.-D., Mayr, R., Vojnar, T.: Simulation Subsumption in Ramsey-Based Büchi Automata Universality and Inclusion Testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 132–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Chen, Y.-F., Clemente, L., Holík, L., Hong, C.-D., Mayr, R., Vojnar, T.: Advanced Ramsey-Based Büchi Automata Inclusion Testing. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Banieqbal, B., Barringer, H.: Temporal Logic with Fixed Points. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 62–73. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  4. 4.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford University Press, Stanford (1962)Google Scholar
  5. 5.
    Dax, C., Hofmann, M.O., Lange, M.: A Proof System for the Linear Time μ-Calculus. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 273–284. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Fogarty, S., Vardi, M.Y.: Büchi Complementation and Size-Change Termination. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 16–30. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Fogarty, S., Vardi, M.Y.: Efficient Büchi Universality Checking. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Klarlund, N.: Progress measures for complementation of ω-automata with applications to temporal logic. In: Proc. 32nd Annual Symp. on Foundations of Computer Science, FOCS 1991, pp. 358–367. IEEE (1991)Google Scholar
  9. 9.
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transactions on Computational Logic 2(3), 408–429 (2001)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. ACM SIGPLAN Notices 36(3), 81–92 (2001)CrossRefGoogle Scholar
  11. 11.
    Pnueli, A.: The temporal logic of programs. In: Proc. 18th Symp. on Foundations of Computer Science, FOCS 1977, pp. 46–57. IEEE, Providence (1977)Google Scholar
  12. 12.
    Ramsey, F.P.: On a problem of formal logic. Proc. London Mathematical Society, Series 2 30(4), 338–384 (1928)Google Scholar
  13. 13.
    Safra, S.: On the complexity of ω-automata. In: Proc. 29th Symp. on Foundations of Computer Science, FOCS 1988, pp. 319–327. IEEE (1988)Google Scholar
  14. 14.
    Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic. TCS 49(2-3), 217–237 (1987)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Tabakov, D., Vardi, M.Y.: Experimental Evaluation of Classical Automata Constructions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 396–411. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Vardi, M.Y.: A temporal fixpoint calculus. In: ACM (ed.) Proc. Conf. on Principles of Programming Languages, POPL 1988, pp. 250–259. ACM, NY (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oliver Friedmann
    • 1
  • Martin Lange
    • 2
  1. 1.Dept. of Computer ScienceLudwig-Maximilians-UniversityMunichGermany
  2. 2.School of Electr. Eng. and Computer ScienceUniversity of KasselGermany

Personalised recommendations