Zeno: An Automated Prover for Properties of Recursive Data Structures

  • William Sonnex
  • Sophia Drossopoulou
  • Susan Eisenbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7214)

Abstract

Zeno is a new tool for the automatic generation of proofs of simple properties of functions over recursively defined data structures. It takes a Haskell program and an assertion as its goal and tries to contruct a proof for that goal. If successful, it converts the proof into Isabelle code. Zeno searches for a proof tree by iteratively reducing the goal into a conjunction of sub-goals, terminating when all leaves are proven true.

This process requires the exploration of many alternatives. We have adapted known, and developed new, heuristics for the reduction of the search space. Our new heuristics aim to promote the application of function definitions, and avoid the repetition of similar proof steps.

We compare with the rippling based tool IsaPlanner and the industrial strength tool ACL2s on the basis of a test suite from the IsaPlanner website. We found that Zeno compared favourably with these tools both in terms of theorem proving power and speed.

References

  1. 1.
    Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Barnett, M., Leino, K., Schulte, W.: The Spec# Programming System: An Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Boyer, R.S., Moore, J.S.: A theorem prover for a computational logic. In: CADE (1990)Google Scholar
  4. 4.
    Bundy, A., Stevens, A., Harmelen, F.V., Ireland, A., Smaill, A.: Rippling: A Heuristic for Guiding Inductive Proofs. Art. Intell. (62) (1993)Google Scholar
  5. 5.
    Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of Haskell programs. In: ICFP, pp. 268–279 (2000)Google Scholar
  6. 6.
    de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Dillinger, P.C., Manolios, P., Vroon, D., Moore, J.S.: ACL2s: ”The ACL2 Sedan”. In: ICSE, pp. 59–60 (2007)Google Scholar
  8. 8.
    Dixon, L., Fleuriot, J.: IsaPlanner: A Prototype Proof Planner in Isabelle. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279–283. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ireland, A., Bundy, A.: Productive use of failure in inductive proof. Journal of Automated Reasoning 16, 16–1 (1995)Google Scholar
  10. 10.
    Johansson, M., Dixon, L., Bundy, A.: Case-Analysis for Rippling and Inductive Proof. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 291–306. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Johansson, M., Dixon, L., Bundy, A.: Conjecture Synthesis for Inductive Theories. Journal of Automated Reasoning 47, 251–289 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Leino, K.R.M.: Automating Induction with an SMT Solver. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated Reasoning 5 (1989)Google Scholar
  14. 14.
    Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy Smallcheck: automatic exhaustive testing for small values. In: First ACM SIGPLAN Symposium on Haskell, pp. 37–48 (2008)Google Scholar
  15. 15.
    Walther, C., Schweitzer, S.: About VeriFun. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 322–327. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Wenzel, M.: Isar - A Generic Interpretative Approach to Readable Formal Proof Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Xu, D., Peyton-Jones, S., Claesen, K.: Static Contract Checking for Haskell. In: POPL (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • William Sonnex
    • 1
  • Sophia Drossopoulou
    • 1
  • Susan Eisenbach
    • 1
  1. 1.Imperial College LondonUK

Personalised recommendations