Coupling and Importance Sampling for Statistical Model Checking

  • Benoît Barbot
  • Serge Haddad
  • Claudine Picaronny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7214)


Statistical model-checking is an alternative verification technique applied on stochastic systems whose size is beyond numerical analysis ability. Given a model (most often a Markov chain) and a formula, it provides a confidence interval for the probability that the model satisfies the formula. One of the main limitations of the statistical approach is the computation time explosion triggered by the evaluation of very small probabilities. In order to solve this problem we develop a new approach based on importance sampling and coupling. The corresponding algorithms have been implemented in our tool cosmos. We present experimentation on several relevant systems, with estimated time reductions reaching a factor of 10− 120.


statistical model checking rare events importance sampling coupling 


  1. 1.
    Amparore, E.G., Donatelli, S.: Model checking CSL\(^{\mbox{TA}}\) with deterministic and stochastic Petri nets. In: DSN, pp. 605–614 (2010)Google Scholar
  2. 2.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)CrossRefGoogle Scholar
  3. 3.
    Bain, L.J., Engelhardt, M.: Introduction to Probability and Mathematical Statistics, 2nd edn. Duxbury Classic Series (1991)Google Scholar
  4. 4.
    Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: HASL: An expressive language for statistical verification of stochastic models. In: VALUETOOLS 2011, Cachan, France (May 2011) (to appear)Google Scholar
  5. 5.
    Barbot, B., Haddad, S., Picaronny, C.: Échantillonnage préférentiel pour le model checking statistique. In: MSR 2011. Journal Européen des Systèmes Automatisés, vol. 45, pp. 237–252 (2011)Google Scholar
  6. 6.
    Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for statistical model checking. Research Report LSV-12-01, Laboratoire Spécification et Vérification. ENS Cachan, France (January 2012)Google Scholar
  7. 7.
    Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool suite for automatic verification of real-time systems. In: Hybrid Systems, pp. 232–243 (1995)Google Scholar
  8. 8.
    Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: Graphical editor and analyzer for timed and stochastic Petri nets. Perform. Eval. 24(1-2), 47–68 (1995)zbMATHCrossRefGoogle Scholar
  9. 9.
    Ciesinski, F., Baier, C.: LiQuor: A tool for qualitative and quantitative linear time analysis of reactive systems. In: QEST 2006, pp. 131–132 (2006)Google Scholar
  10. 10.
    Clarke, E.M., Zuliani, P.: Statistical Model Checking for Cyber-Physical Systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    de Boer, P.-T.: Analysis of state-independent importance-sampling measures for the two-node tandem queue. ACM Trans. Model. Comput. Simul. 16(3), 225–250 (2006)CrossRefGoogle Scholar
  12. 12.
    Dupuis, P., Sezer, A.D., Wang, H.: Dynamic importance sampling for queueing networks. Annals of Applied Probability 17, 1306–1346 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Emerson, E.A., Clarke, E.M.: Characterizing Correctness Properties of Parallel Programs Using Fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  14. 14.
    Glynn, P.W., Iglehart, D.L.: Importance sampling for stochastic simulations. Management Science (1989)Google Scholar
  15. 15.
    Heegaard, P.E., Sandmann, W.: Ant-based approach for determining the change of measure in importance sampling. In: Winter Simulation Conference, pp. 412–420 (2007)Google Scholar
  16. 16.
    Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. In: International Conference on Quantitative Evaluation of Systems, pp. 167–176 (2009)Google Scholar
  17. 17.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model Checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 113–140. Springer, Heidelberg (2002)Google Scholar
  18. 18.
    Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    L’Ecuyer, P., Demers, V., Tuffin, B.: Splitting for rare-event simulation. In: Winter Simulation Conference, pp. 137–148 (2006)Google Scholar
  20. 20.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Lindvall, T.: Lectures on the coupling method. Dover (2002)Google Scholar
  22. 22.
    Rubino, G., Tuffin, B.: Rare Event Simulation using Monte Carlo Methods. Wiley (2009)Google Scholar
  23. 23.
    Sen, K., Viswanathan, M., Agha, G.: VESTA: A statistical model-checker and analyzer for probabilistic systems. In: QEST, pp. 251–252 (2005)Google Scholar
  24. 24.
    Srinivasan, R.: Importance sampling – Applications in communications and detection. Springer, Berlin (2002)zbMATHGoogle Scholar
  25. 25.
    Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benoît Barbot
    • 1
  • Serge Haddad
    • 1
  • Claudine Picaronny
    • 1
  1. 1.LSV, ENS Cachan & CNRS & INRIACachanFrance

Personalised recommendations