Automatic Verification of Competitive Stochastic Systems

  • Taolue Chen
  • Vojtěch Forejt
  • Marta Kwiatkowska
  • David Parker
  • Aistis Simaitis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7214)

Abstract

We present automatic verification techniques for the modelling and analysis of probabilistic systems that incorporate competitive behaviour. These systems are modelled as turn-based stochastic multi-player games, in which the players can either collaborate or compete in order to achieve a particular goal. We define a temporal logic called rPATL for expressing quantitative properties of stochastic multi-player games. This logic allows us to reason about the collective ability of a set of players to achieve a goal relating to the probability of an event’s occurrence or the expected amount of cost/reward accumulated. We give a model checking algorithm for verifying properties expressed in this logic and implement the techniques in a probabilistic model checker, based on the PRISM tool. We demonstrate the applicability and efficiency of our methods by deploying them to analyse and detect potential weaknesses in a variety of large case studies, including algorithms for energy management and collective decision making for autonomous systems.

Keywords

Temporal Logic Markov Decision Process Stochastic Game Atomic Proposition Reward Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aizatulin, M., Schnoor, H., Wilke, T.: Computationally Sound Analysis of a Probabilistic Contract Signing Protocol. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 571–586. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    de Alfaro, L.: Computing Minimum and Maximum Reachability Times in Probabilistic Systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, p. 66. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: LICS (2000)Google Scholar
  4. 4.
    Alur, R., Henzinger, T.A., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: MOCHA: Modularity in Model Checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 672–713 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Baier, C., Brázdil, T., Größer, M., Kucera, A.: Stochastic game logic. In: Proc. QEST 2007, pp. 227–236. IEEE (2007)Google Scholar
  7. 7.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  8. 8.
    Ballarini, P., Fisher, M., Wooldridge, M.: Uncertain Agent Verification through Probabilistic Model-Checking. In: Barley, M., Mouratidis, H., Unruh, A., Spears, D., Scerri, P., Massacci, F. (eds.) SASEMAS 2004-2006. LNCS, vol. 4324, pp. 162–174. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative Synthesis for Concurrent Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Chatterjee, K., Henzinger, T.A., Jobstmann, B., Radhakrishna, A.: Gist: A Solver for Probabilistic Games. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 665–669. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Chatterjee, K.: Stochastic ω-Regular Games. Ph.D. thesis (2007)Google Scholar
  12. 12.
    Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verification of competitive stochastic systems. Tech. Rep. RR-11-11, University of Oxford (2011)Google Scholar
  13. 13.
    Chen, T., Kwiatkowska, M., Parker, D., Simaitis, A.: Verifying Team Formation Protocols with Probabilistic Model Checking. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA XII 2011. LNCS, vol. 6814, pp. 190–207. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Chen, T., Lu, J.: Probabilistic alternating-time temporal logic and model checking algorithm. In: Proc. FSKD 2007, pp. 35–39. IEEE (2007)Google Scholar
  15. 15.
    Condon, A.: On algorithms for simple stochastic games. In: Advances in Computational Complexity Theory. DIMACS, vol. 13, pp. 51–73 (1993)Google Scholar
  16. 16.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)MATHGoogle Scholar
  17. 17.
    Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated Verification Techniques for Probabilistic Systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)MATHCrossRefGoogle Scholar
  19. 19.
    Hildmann, H., Saffre, F.: Influence of variable supply and load flexibility on demand-side management. In: Proc. EEM 2011, pp. 63–68 (2011)Google Scholar
  20. 20.
    van der Hoek, W., Wooldridge, M.: Model checking cooperation, knowledge, and time - A case study. Research In Economics 57(3), 235–265 (2003)CrossRefGoogle Scholar
  21. 21.
    Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair exchange protocols. Journal of Computer Security 11(3), 399–430 (2003)Google Scholar
  22. 22.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A Model Checker for the Verification of Multi-Agent Systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Martin, D.: The determinacy of Blackwell games. J. Symb. Log. 63(4) (1998)Google Scholar
  25. 25.
    McIver, A., Morgan, C.: Results on the quantitative mu-calculus qMu. ACM Transactions on Computational Logic 8(1) (2007)Google Scholar
  26. 26.
    Saffre, F., Simaitis, A.: Host selection through collective decision. ACM Transactions on Autonomous and Adaptive Systems, TAAS (to appear, 2012)Google Scholar
  27. 27.
    Ummels, M.: Stochastic Multiplayer Games: Theory and Algorithms. Ph.D. thesis, RWTH Aachen University (2010)Google Scholar
  28. 28.
    Zhang, C., Pang, J.: On Probabilistic Alternating Simulations. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 71–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Taolue Chen
    • 1
  • Vojtěch Forejt
    • 1
  • Marta Kwiatkowska
    • 1
  • David Parker
    • 1
  • Aistis Simaitis
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations