A Study of the Interaction between ELF-EMF and Bacteria

  • Shaobin Gu
  • Guowei Lu
  • Ying Wu
  • Shichang Li
  • Yunxia Zhao
  • Kewei Li
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 155)

Abstract

ELF-EMF, one of environmental factors, widely exists in natural world. However, the interaction between ELF-EMF and biological materials is usually neglected in the field of biological research. Very little efforts have been put forth in studying the relationship of bacteria and ELF-EMF. Here we investigated the stress reaction of Escherichia coli, Salmonella, Bacillus subtilis and OP50 cells to the stimulation of ELF-EMF. The results showed that the ELF-EMF treatment significantly decreased the colony forming efficiency of Escherichia coli, Bacillus subtilis and OP50 and this effect may be a kind of gene-dependence effect. In addition, this study also indicated that ELF-EMF could cause significant DNA damaged. Salmonella’s DNA was serious damaged in 50 Hz, 3 mT for 18 and 24 h. Moreover, short time continual stimulated, for instance, 10 and 14 h continual stimulated also caused DNA chain’s broken to some extent. Continual stimulated and passage’s result approved that this kind of DNA damaged could be decreased by serial passage and the damaged cause by ELF-EMF exposure might be a kind of gene toxic.

Keywords

ELF-EMF Escherichia coli Bacillus Substitute Salmonella gene -dependence gene toxic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goodman, E.M., Sharpe, P.T., Greenebaum, B., Marron, M.T.: Pulsed magnetic fields alter the cell surface. FEBS Letters 199, 275–278 (1986)CrossRefGoogle Scholar
  2. 2.
    McCann, J., Dietrich, F., Rafferty, C., McCann, J., Dietrich, F., Rafferty, C.: The genotoxic potential of electric and magnetic fields: an update. Mutat. Res. 411, 5–86 (1998)Google Scholar
  3. 3.
    McCann, J., Dietrich, F., Rafferty, C.: The genotoxic potential of electric and magnetic fields: an update. Mutat. Res. 411, 45–86 (1998)CrossRefGoogle Scholar
  4. 4.
    Murphy, J.C., Kaden, D.A., Warren, J., Sivak, A.: Power frequency electric and magnetic fields: a review of genetic toxicology. Mutat. Res. 296, 221–240 (1993)Google Scholar
  5. 5.
    McCan, J., Dietrich, F., Rafferty, C., Martin, A.: A critical review of the genotoxic potential of electric and magnetic fields. Mutat. Res. 297, 61–95 (1993)Google Scholar
  6. 6.
    Ivancsits, S., Diem, E., Pilger, A., Rüdiger, H.W., Jahn, O.: Induction of DNA strand breaks by exposure to extremely-lowfrequency electromagnetic fields in human diploid fibroblasts. Mutat. Res. 519, 1–13 (2002)Google Scholar
  7. 7.
    Ivancsits, S., Diem, E., Jahn, O., Rüdiger, H.W.: Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose dependent way. Int. Arch. Occup. Environ. Health 76, 431–436 (2003)CrossRefGoogle Scholar
  8. 8.
    Ivancsits, S., Diem, E., Jahn, O., Rüdiger, H.W.: Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech. Age Dev. 124, 847–850 (2003)CrossRefGoogle Scholar
  9. 9.
    Wertheimer, N., Leeper, E.: Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 109, 273–284 (1979)Google Scholar
  10. 10.
    Savitz, D.A., Wachtel, H., Barnes, F.A., John, E.M., Tvrdik, J.G.: Case control study of childhood cancer and exposure to 60 Hz magnetic fields. Am. J. Epidemiol. 128, 21–38 (1988)Google Scholar
  11. 11.
    Feychting, M., Forssen, U., Floderus, B.: Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology 8, 384–389 (1997)CrossRefGoogle Scholar
  12. 12.
    Li, C.Y., Theriault, G., Lin, R.S.: Residential exposure to 60 Hz magnetic fields and adult cancers in Taiwan. Epidemiology 8, 25–30 (1997)CrossRefGoogle Scholar
  13. 13.
    Verkasalo, P.K., Pukkala, E., Hongisto, M.Y., Valjus, J.E., Järvinen, P.J., Heikkilä, K.V., Koskenvuo, M.: Risk of cancer in Finnish children living close to power lines. Br. Med. J. 307, 895–899 (1993)CrossRefGoogle Scholar
  14. 14.
    Tomenius, L.: 50 Hz electromagnetic environment and the incidence of childhood tumors in Stockholm County. Bioelectromagnetics 7, 191–207 (1986)CrossRefGoogle Scholar
  15. 15.
    Schreibner, G.H., Swaen, G.M.H., Meijers, J.M.M., Slangen, J.J.M., Sturmans, F.: Cancer mortality and residence near electricity transmission equipment: a retrospective cohort study. Int. J. Epidemiol. 22, 9–15 (1993)CrossRefGoogle Scholar
  16. 16.
    Miyakoshi, J., Yoshida, M., Shibuya, K., Hiraoka, M.: Exposure to strong magnetic fields at power frequency potentiates X-ray-induced DNA strand breaks. J. Radiat. Res. 41, 293–302 (2000)CrossRefGoogle Scholar
  17. 17.
    Belyaev, I.Y., Matronchik, A.Y., Alipov, Y.D.: The effect of weak static and alternating magnetic fields on the genome conformational state of E. coli cells: the evidence for model of phase modulation of high frequency oscillation. In: Allen, M.J. (ed.) Charge and Field Effects in Biosystems, vol. 4, pp. 174–184. World Scientific, Singapore (1994)Google Scholar
  18. 18.
    Chang, J.J.: Physical properties of biophotons and their biological functions. Indian J. Exp. Biol. 46, 371–377 (2008)Google Scholar
  19. 19.
    Binhi, V.: Do naturally occurring magnetic nanoparticles in the human body mediate increased risk of childhood leukaemia with EMF exposure? Int. J. Radiat. Biol. 84, 569–579 (2008)CrossRefGoogle Scholar
  20. 20.
    Nordenson, I., Mild, K.H., Jarventaus, H., Hirvonen, A., Sandstrom, M., Wilen, J., Blix, N., Norppa, H.: Chromosomal aberrations in peripheral lymphocytes of train engine drivers. Bioelectromagnetics 22, 306–315 (2001)CrossRefGoogle Scholar
  21. 21.
    Skyberg, K., Hansteen, I.L., Vistnes, A.I.: Chromosomal aberrations in lymphocytes of employees in transformer and generator production exposed to electromagnetic fields and mineral oil. Bioelectromagnetics 22, 150–160 (2001)CrossRefGoogle Scholar
  22. 22.
    Simko, M., Kriehuber, R., Weiss, D.G., Luben, R.A.: Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and non-transformed human cell lines. Bioelectromagnetics 19, 85–91 (1998)CrossRefGoogle Scholar
  23. 23.
    Simko, M., Kriehuber, R., Lange, S.: Micronucleus formation in human amnion cells after exposure to 50 Hz MF applied horizontally and vertically. Mutat. Res. 418, 101–111 (1998)Google Scholar
  24. 24.
    Nordenson, I., Mild, K.H., Andersson, G., Sandstrom, M.: Chromosomal aberrations in human amniotic cells after intermittent exposure to fifty hertz magnetic fields. Bioelectromagnetics 15, 293–301 (1994)CrossRefGoogle Scholar
  25. 25.
    Pan, F., Wang, W., Shi, L.: Application of Umu Test in Environmental science. Journal of Anhui. Agri. Sci. 35, 2208–2210 (2007)Google Scholar
  26. 26.
    Fojt, L., Strašák, L., Vetterl, V., Šmarda, J.: Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 63, 337–341 (2004)CrossRefGoogle Scholar
  27. 27.
    Galvanoskis, J., Sandblom, J.: Periodic forcing of intracellular calcium oscillators. Theoretical studies of the effects of low-frequency fields on the magnitude of oscillations. Bioelectrochem. Bioenerg. 46, 161–174 (1998)CrossRefGoogle Scholar
  28. 28.
    Belyaev, I.Y., Alipov, E.D.: Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes. Biochimica. et. Biophysica. Acta 1526, 269–276 (2001)CrossRefGoogle Scholar
  29. 29.
    Taylor, A.L., Trotter, C.D.: A linkage map and gene catalog for Escherichia coli. In: King, R.C. (ed.) Handbook of Genetics, 1st edn., pp. 135–156. Plenum Press, New York (1974)Google Scholar
  30. 30.
    Buechner, M., Delcour, A.H., Martinac, B., Adler, J., Kung, C.: Ion channel activities in the Escherichia coli outer membrane. Biochimica. et. Biophysica. Acta 1024, 111–121 (1990)CrossRefGoogle Scholar
  31. 31.
    Kwee, S., Raskmark, P.: Changes in cell proliferation due to environmental non-ionizing radiation 1. ELF electromagnetic fields. Bioeleetrochemistry and Bioenergetics 36, 109–114 (1995)CrossRefGoogle Scholar
  32. 32.
    Olsson, G., Belyaev, I.Y., Helleday, T., Ringdahl, M.H.: ELF magnetic field affects proliferation of SPD8/V79 Chinese hamster cells but does not interact with intrachromosomal recombination. Mutation Research 493, 55–66 (2001)Google Scholar
  33. 33.
    Blan, M., Goodman, R.: Electromagnetic fields stress living cells. Pathophysiology 16, 71–78 (2009)CrossRefGoogle Scholar
  34. 34.
    Blank, M., Soo, L.: Surface free energy as the potential in oligomeric equilibria: prediction of hemoglobin disaggregation constant. Bioelectrochem. Bioenerg. 17, 349–360 (1987)CrossRefGoogle Scholar
  35. 35.
    Blank, M., Soo, L.: Enhancement of cytochrome oxidase activity in 60 Hz magnetic fields. Bioelectrochem. Bioenerg. 45, 253–259 (1998)CrossRefGoogle Scholar
  36. 36.
    Blank, M., Soo, L.: Electromagnetic acceleration of the BelousovZhabotinski reaction. Bioelectrochem. 61, 93–97 (2003)CrossRefGoogle Scholar
  37. 37.
    Lai, H., Singh, N.P.: Interaction of microwaves and a temporally incoherent magnetic field on single and double DNA strand breaks in rat brain cells. Electromagn. Biol. Med. 24, 23–29 (2005)CrossRefGoogle Scholar
  38. 38.
    Blank, M.: Protein and DNA interactions with electromagnetic fields. Electromagn. Biol. Med. 28, 3–23 (2008)CrossRefGoogle Scholar
  39. 39.
    Wan, C., Fiebig, T., Kelley, S.O., Treadway, C.R., Barton, J.K.: Femtosecond dynamics of DNA-mediated electron transfer. Proc. Nat. Acad. Sci. USA 96, 6014–6019 (1999)CrossRefGoogle Scholar
  40. 40.
    Blank, M., Goodman, R.: Initial interactions in electromagnetic field-induced biosynthesis. J. Cell Physiol. 199, 359–363 (2004)CrossRefGoogle Scholar
  41. 41.
    Blank, M., Goodman, R.: A mechanism for stimulation of biosynthesis by electromagnetic fields: charge transfer in DNA and base pair separation. J. Cell Physiol. 214, 20–26 (2008)CrossRefGoogle Scholar
  42. 42.
    Marais, R., Wynne, J., Treisman, R.: The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381–393 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Shaobin Gu
    • 1
  • Guowei Lu
    • 1
  • Ying Wu
    • 1
  • Shichang Li
    • 1
  • Yunxia Zhao
    • 1
  • Kewei Li
    • 1
  1. 1.College of Food and BioengineeringHenan University of Science and TechnologyLuoyangPeople’s Republic of China

Personalised recommendations