Branching-Time Model Checking of Parametric One-Counter Automata

  • Stefan Göller
  • Christoph Haase
  • Joël Ouaknine
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)

Abstract

We study the computational complexity of model checking EF logic and modal logic on parametric one-counter automata (POCA). A POCA is a one-counter automaton whose counter updates are either integer values encoded in binary or integer-valued parameters. Given a formula and a configuration of a POCA, the model-checking problem asks whether the formula is true in this configuration for all possible valuations of the parameters. We show that this problem is undecidable for EF logic via reduction from Hilbert’s tenth problem, however for modal logic we prove PSPACE-completeness. Obtaining the PSPACE upper bound involves analysing systems of linear Diophantine inequalities of exponential size that admit solutions of polynomial size. Finally, we show that model checking EF logic on POCA without parameters is PSPACE-complete.

References

  1. 1.
    Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with Lists are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 517–531. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bozga, M., Iosif, R.: On Decidability within the Arithmetic of Addition and Divisibility. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 425–439. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bozga, M., Iosif, R., Lakhnech, Y.: Flat Parametric Counter Automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 577–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Chitic, C., Rosu, D.: On validation of xml streams using finite state machines. In: Proc. of WebDB, pp. 85–90. ACM, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Comon, H., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Presburger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model Checking Succinct and Parametric One-Counter Automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 575–586. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Göller, S., Lohrey, M.: Branching-time Model Checking of One-counter Processes. In: Proc. of STACS. LIPIcs, vol. 5, pp. 405–416. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)Google Scholar
  8. 8.
    Göller, S., Mayr, R., To, A.W.: On the Computational Complexity of Verifying One-Counter Processes. In: Proc. of LICS, pp. 235–244. IEEE Computer Society (2009)Google Scholar
  9. 9.
    Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in Succinct and Parametric One-Counter Automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Hague, M., Lin, A.W.: Model Checking Recursive Programs with Numeric Data Types. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Ibarra, O.H., Dang, Z.: On the solvability of a class of diophantine equations and applications. Theor. Comput. Sci. 352(1), 342–346 (2006)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ibarra, O.H., Jiang, T., Trân, N., Wang, H.: New decidability results concerning two-way counter machines and applications. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, Springer, Heidelberg (1993)Google Scholar
  13. 13.
    Jančar, P., Kučera, A., Mayr, R.: Deciding bisimulation-like equivalences with finite-state processes. Theor. Comput. Sci. 258(1-2), 409–433 (2001)MATHCrossRefGoogle Scholar
  14. 14.
    Lange, M.: Model checking propositional dynamic logic with all extras. J. Applied Logic 4(1), 39–49 (2006)MATHCrossRefGoogle Scholar
  15. 15.
    Leroux, J., Sutre, G.: Flat Counter Automata Almost Everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Matiyasevich, Y.: Enumerable sets are Diophantine. Soviet Math. Dokl. 11, 354–357 (1970)MATHGoogle Scholar
  17. 17.
    Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Annals of Mathematics. Second Series 74, 437–455 (1961)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Robinson, J.: Definability and Decision Problems in Arithmetic. J. Symbolic Logic 14(2), 98–114 (1949)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York (1986)MATHGoogle Scholar
  20. 20.
    Serre, O.: Parity Games Played on Transition Graphs of One-Counter Processes. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337–351. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Shallit, J.: The Frobenius Problem and its Generalizations. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 72–83. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    To, A.W.: Model Checking FO(R) over One-Counter Processes and beyond. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 485–499. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Göller
    • 1
  • Christoph Haase
    • 2
  • Joël Ouaknine
    • 2
  • James Worrell
    • 2
  1. 1.Institut für InformatikUniversität BremenGermany
  2. 2.Department of Computer ScienceUniversity of OxfordUK

Personalised recommendations