Subgame Perfection for Equilibria in Quantitative Reachability Games

  • Thomas Brihaye
  • Véronique Bruyère
  • Julie De Pril
  • Hugo Gimbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)

Abstract

We study turn-based quantitative multiplayer non zero-sum games played on finite graphs with reachability objectives. In such games, each player aims at reaching his own goal set of states as soon as possible. A previous work on this model showed that Nash equilibria (resp. secure equilibria) are guaranteed to exist in the multiplayer (resp. two-player) case. The existence of secure equilibria in the multiplayer case remained, and is still an open problem. In this paper, we focus our study on the concept of subgame perfect equilibrium, a refinement of Nash equilibrium well-suited in the framework of games played on graphs. We also introduce the new concept of subgame perfect secure equilibrium. We prove the existence of subgame perfect equilibria (resp. subgame perfect secure equilibria) in multiplayer (resp. two-player) quantitative reachability games. Moreover, we provide an algorithm deciding the existence of secure equilibria in the multiplayer case.

Keywords

Nash Equilibrium Subgame Perfect Equilibrium Initial Vertex Subgame Perfection Quantitative Objective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Kanade, A., Weiss, G.: Ranking Automata and Games for Prioritized Requirements. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 240–253. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bloem, R., Chatterjee, K., Henzinger, T., Jobstmann, B.: Better Quality in Synthesis through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Boros, E., Gurvich, V.: Why chess and back gammon can be solved in pure positional uniformly optimal strategies. Rutcor Research Report 21-2009. Rutgers University (2009)Google Scholar
  4. 4.
    Bouyer, P., Brenguier, R., Markey, N.: Nash Equilibria for Reachability Objectives in Multi-Player Timed Games. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 192–206. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bouyer, P., Brenguier, R., Markey, N., Ummels, M.: Nash equilibria in concurrent games with Büchi objectives. In: Foundations of Software Technology and Theoretical Computer Science, FSTTCS. LIPIcs, vol. 13, pp. 375–386. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)Google Scholar
  6. 6.
    Brihaye, T., Bruyère, V., De Pril, J.: Equilibria in Quantitative Reachability Games. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 72–83. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Brihaye, T., Bruyère, V., De Pril, J.: On equilibria in quantitative games with reachability/safety objectives. Technical report (2011), http://www.ulb.ac.be/di/gasics/equilibria.pdf
  8. 8.
    Brihaye, T., Bruyère, V., De Pril, J., Gimbert, H.: Subgame Perfection for Equilibria in Quantitative Reachability Games. Technical report (2011), http://www.ulb.ac.be/di/gasics/subgame-perfection.pdf
  9. 9.
    Chatterjee, K., Henzinger, T., Jurdziński, M.: Games with secure equilibria. Theoretical Computer Science 365(1-2), 67–82 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chatterjee, K., Henzinger, T.A.: Finitary Winning in Omega-Regular Games. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 257–271. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Chatterjee, K., Henzinger, T.A.: Assume-Guarantee Synthesis. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Chatterjee, K., Raman, V.: Assume-guarantee synthesis for digital contract signing. CoRR, abs/1004.2697 (2010)Google Scholar
  13. 13.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  14. 14.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)MATHGoogle Scholar
  15. 15.
    Grädel, E., Ummels, M.: Solution concepts and algorithms for infinite multiplayer games. In: New Perspectives on Games and Interaction. Texts in Logic and Games, vol. 4, pp. 151–178. Amsterdam University Press (2008)Google Scholar
  16. 16.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Co., Reading (1979)MATHGoogle Scholar
  17. 17.
    Horn, F., Thomas, W., Wallmeier, N.: Optimal Strategy Synthesis in Request-Response Games. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 361–373. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Kechris, A.: Classical descriptive set theory. Springer, Heidelberg (1995)MATHCrossRefGoogle Scholar
  19. 19.
    Klimoš, M., Larsen, K.G., Štefaňák, F., Thaarup, J.: Nash Equilibria in Concurrent Priced Games. In: Dediu, A.-H. (ed.) LATA 2012. LNCS, vol. 7183, pp. 363–376. Springer, Heidelberg (2012)Google Scholar
  20. 20.
    Kuhn, H.: Extensive games and the problem of information. Classics in Game Theory, 46–68 (1953)Google Scholar
  21. 21.
    Le Roux, S.: Acyclic Preferences and Existence of Sequential Nash Equilibria: A Formal and Constructive Equivalence. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 293–309. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the United States of America 36(1), 48–49 (1950)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Osborne, M., Rubinstein, A.: A course in game theory. MIT Press, Cambridge (1994)MATHGoogle Scholar
  24. 24.
    Paul, S., Simon, S., Kannan, R., Kumar, K.: Nash equilibrium in generalised muller games. In: Foundations of Software Technology and Theoretical Computer Science, FSTTCS. LIPIcs, vol. 4, pp. 335–346. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)Google Scholar
  25. 25.
    Selten, R.: Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Zeitschrift für die gesamte Staatswissenschaft 121, 301–324, 667–689 (1965)Google Scholar
  26. 26.
    Thomas, W.: On the Synthesis of Strategies in Infinite Games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  27. 27.
    Thomas, W.: Church’s Problem and a Tour through Automata Theory. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 635–655. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Zimmermann, M.: Time-Optimal Winning Strategies for Poset Games. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 217–226. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Brihaye
    • 1
  • Véronique Bruyère
    • 1
  • Julie De Pril
    • 1
  • Hugo Gimbert
    • 2
  1. 1.University of Mons - UMONSMonsBelgium
  2. 2.LaBRI & CNRSBordeauxFrance

Personalised recommendations