Narcissists Are Easy, Stepmothers Are Hard

  • Daniel Gorín
  • Lutz Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)


Modal languages are well-known for their robust decidability and relatively low complexity. However, as soon as one adds a self-referencing construct, like hybrid logic’s down-arrow binder, to the basic modal language, decidability is lost, even if one restricts binding to a single variable. Here, we concentrate on the latter case and investigate the logics obtained by restricting the nesting depth of modalities between binding and use. In particular, for distances strictly below 3 we obtain well-behaved logics with a relatively high descriptive power. We investigate the fragment with distance 1 in the framework of coalgebraic modal logic, for which we provide very general decidability and complexity results. For the fragment with distance 2 we focus on the case of Kripke semantics and obtain optimum complexity bounds (no harder than the base logic). We show that this fragment is expressive enough to accommodate the guarded fragment over the correspondence language.


Modal Logic Description Logic Model Property Modal Language Relation Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments of predicate logic. J. Phil. Log. 27(3), 217–274 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory logics. Rev. Symb. Log. 2, 290–318 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logics. Elsevier (2006)Google Scholar
  4. 4.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press (2003)Google Scholar
  5. 5.
    Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114, 299–315 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  7. 7.
    D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets. Arch. Math. Log. 41, 267–298 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fine, K.: In so many possible worlds. Notre Dame J. Form. Log. 13, 516–520 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Goré, R., Kupke, C., Pattinson, D.: Optimal Tableau Algorithms for Coalgebraic Logics. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 114–128. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Gorín, D., Schröder, L.: Celebrities don’t follow their followers: Binding and qualified number restrictions. Technical report, DFKI GmbH (2011)Google Scholar
  11. 11.
    Grädel, E.: On the restraining power of guards. J. Symb. Log. 64 (1999)Google Scholar
  12. 12.
    Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierarchies. J. Log. Comput. 9, 385–410 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput. 94(1), 1–28 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Marx, M.: Narcissists, stepmothers and spies. In: International Workshop on Description Logics, CEUR Workshop Proceedings (2002),
  15. 15.
    Myers, R., Pattinson, D., Schröder, L.: Coalgebraic Hybrid Logic. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 137–151. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309, 177–193 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Pratt-Hartmann, I.: Complexity of the guarded two-variable fragment with counting quantifiers. J. Log. Comput. 17(1), 133–155 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Schneider, T.: The Complexity of Hybrid Logics over Restricted Classes of Frames. PhD thesis, Univ. of Jena (2007)Google Scholar
  19. 19.
    Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Algebr. Prog. 73, 97–110 (2007)zbMATHCrossRefGoogle Scholar
  20. 20.
    Schröder, L., Pattinson, D.: How many toes do I have? Parthood and number restrictions in description logics. In: Principles of Knowledge Representation and Reasoning, KR 2008, pp. 307–218. AAAI Press (2008)Google Scholar
  21. 21.
    Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput. Log. 10, 13:1–13:33 (2009)Google Scholar
  22. 22.
    ten Cate, B., Franceschet, M.: On the Complexity of Hybrid Logics with Binders. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 339–354. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    van Benthem, J.: Correspondence theory. In: Handbook of Philosophical Logic, vol. 3, pp. 325–408. Kluwer (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel Gorín
    • 1
  • Lutz Schröder
    • 1
    • 2
  1. 1.DFKI GmbHBremenGermany
  2. 2.Department of Computer ScienceUniversität BremenGermany

Personalised recommendations