Abstract

Mixed choice is a widely-used primitive in process calculi. It is interesting, as it allows to break symmetries in distributed process networks. We present an encoding of mixed choice in the context of the π-calculus and investigate to what extent it can be considered “good”. As a crucial novelty, we introduce a suitable criterion to measure whether the degree of distribution in process networks is preserved.

References

  1. [Bou92]
    Boudol, G.: Asynchrony and the π-calculus (note). Note, INRIA (May 1992)Google Scholar
  2. [CM03]
    Carbone, M., Maffeis, S.: On the Expressive Power of Polyadic Synchronisation in π-Calculus. Nordic Journal of Computing 10, 1–29 (2003)MathSciNetGoogle Scholar
  3. [Gor08]
    Gorla, D.: Towards a Unified Approach to Encodability and Separation Results for Process Calculi. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 492–507. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. [Gor10]
    Gorla, D.: Towards a Unified Approach to Encodability and Separation Results for Process Calculi. Information and Computation 208(9), 1031–1053 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. [HT91]
    Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  6. [Lan07]
    Lanese, I.: Concurrent and Located Synchronizations in π-Calculus. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 388–399. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. [Nes00]
    Nestmann, U.: What is a ”Good” Encoding of Guarded Choice? Information and Computation 156(1-2), 287–319 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. [Pal03]
    Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the Asynchronous π-calculi. Mathematical Structures in Computer Science 13(5), 685–719 (2003)MathSciNetCrossRefGoogle Scholar
  9. [PN10]
    Peters, K., Nestmann, U.: Breaking Symmetries. In: Fröschle, S.B., Valencia, F.D. (eds.) EXPRESS. EPTCS, vol. 41, pp. 136–150 (2010)Google Scholar
  10. [PN12]
    Peters, K., Nestmann, U.: Is it a ”Good” Encoding of Mixed Choice? (Technical Report). Technical Report, TU Berlin, Germany (January 2012), http://arxiv.org/corr/home
  11. [PSN11]
    Peters, K., Schicke-Uffmann, J.-W., Nestmann, U.: Synchrony vs Causality in the Asynchronous Pi-Calculus. In: Luttik, B., Valencia, F.D. (eds.) EXPRESS. EPTCS, vol. 64, pp. 89–103 (2011)Google Scholar
  12. [SW01]
    Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cambridge University Press, New York (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kirstin Peters
    • 1
  • Uwe Nestmann
    • 1
  1. 1.Technische Universität BerlinGermany

Personalised recommendations