Extending \({\cal H}_1\)-Clauses with Path Disequalities

  • Helmut Seidl
  • Andreas Reuß
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)


We extend \({\mathcal H}_1\)-clauses with disequalities between paths. This extension allows conveniently to reason about freshness of keys or nonces, as well as about more intricate properties such as that a voter may deliver at most one vote. We show that the extended clauses can be normalized into an equivalent tree automaton with path disequalities and therefore conclude that satisfiability of conjunctive queries to predicates defined by such clauses is decidable.


Horn Clause Cryptographic Protocol Conjunctive Query Ground Term Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting protocols. In: Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge, TARK 2007, pp. 62–71. ACM, New York (2007)CrossRefGoogle Scholar
  2. 2.
    Comon, H., Jacquemard, F.: Ground Reducibility and Automata with Disequality Constraints. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 151–162. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Comon, H., Jacquemard, F.: Ground reducibility is exptime-complete. In: LICS 1997: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, pp. 26–34. IEEE Computer Society, Washington, DC, USA (1997)CrossRefGoogle Scholar
  4. 4.
    Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale Elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Godoy, G., Giménez, O., Ramos, L., Àlvarez, C.: The hom problem is decidable. In: STOC, pp. 485–494 (2010)Google Scholar
  6. 6.
    Goubault-Larrecq, J.: Deciding H1 by resolution. Information Processing Letters 95(3), 401–408 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Goubault-Larrecq, J., Parrennes, F.: Cryptographic Protocol Analysis on Real C Code. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Nielson, F., Nielson, H.R., Seidl, H.: Normalizable Horn Clauses, Strongly Recognizable Relations, and Spi. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 20–35. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Reuß, A., Seidl, H.: Bottom-Up Tree Automata with Term Constraints. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 581–593. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Seidl, H., Neumann, A.: On Guarding Nested Fixpoints. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 484–498. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Seidl, H., Reuß, A.: Extending H1-clauses with disequalities. Information Processing Letters 111(20), 1007–1013 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in First-Order Logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Helmut Seidl
    • 1
  • Andreas Reuß
    • 1
  1. 1.Institut für Informatik I2Technische Universität MünchenGarchingGermany

Personalised recommendations