Enhanced Ionization of Molecules in Intense Laser Fields

Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 103)

Abstract

Molecules exposed to intense ultrashort laser pulses undergo rapid ionization at critical large internuclear distances requiring nonperturbative models to explain the highly nonlinear nonperturbative response. Simple quasistatic models allow for the prediction of these critical internuclear distances. It is shown that the mechanism for enhanced ionization is due to overbarrier ionization of the Stark-shifted LUMO (lowest unoccupied molecular orbital) in both symmetric diatomic and triatomic molecules. In nonsymmetric molecules, permanent dipole moments contribute to the strong Stark-shifts of electron orbitals and enhanced ionization occurs through resonances of the HOMO (highest occupied molecular orbital) and LUMO, corresponding to charge transfer. Double ionization is also enhanced at certain critical distances but involves considerable excitations of intermediate electronic states.

Keywords

Critical Distance Ionization Rate Internuclear Distance Double Ionization Coulomb Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the following colleagues for “illuminating” discussions on strong field molecular physics: T. Brabec, P.B. Corkum, C. Cornaggia, H. Kono, K. Yamanouchi, J. Sanderson, and I. Litvinyuk.

References

  1. 1.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)Google Scholar
  2. 2.
    P. Corkum, F. Krausz, Nature Phys. 3, 381 (2007)Google Scholar
  3. 3.
    L. Keldysh, Sov. Phys. JETP 20, 1307 (1965)Google Scholar
  4. 4.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)Google Scholar
  5. 5.
    P.B. Corkum, N.H. Burnett, F. Brunel, Phys. Rev. Lett. 62, 1259 (1989)Google Scholar
  6. 6.
    P.B. Corkum, Phys. Today March 36 (2011)Google Scholar
  7. 7.
    A.J. Verhaef et al., Phys. Rev. Lett. 104, 163904 (2010)Google Scholar
  8. 8.
    F. Krausz, M.Y. Ivanov, Rev. Mod. Phys. 81, 163 (2009)Google Scholar
  9. 9.
    J.I. Steinfield, Molecules and Radiation (MIT Press, Cambridge, USA, 1985)Google Scholar
  10. 10.
    H. Lefebvre-Brion, R.W. Field, Spectra and Dynamics of Diatomic Molecules (Elsevier, Holland, 2004)Google Scholar
  11. 11.
    W. Greiner, B. Muller, J. Rafelski, Quantum Electrodynamics of Strong Fields: Introduction to Modern Relativistic Quantum Mechanics (Springer, Berlin, 1985)Google Scholar
  12. 12.
    S.S. Bulanov et al., Phys. Rev. Lett. 104, 220404 (2010)Google Scholar
  13. 13.
    A.H. Zewail, J. Phys. Chem. A. 104, 5660 (2000)Google Scholar
  14. 14.
    A.D. Bandrauk, S. Barmaki, S. Chelkowski, G.L. Kamta, in “Progress in Ultrafast Intense Laser Science”, vol III, Chap. 9, ed. By K. Yamanouchi et al. (Springer, N. Y., 2007)Google Scholar
  15. 15.
    S. Chelkowski, G. Yudin, A.D. Bandrauk, J. Phys. B. 39, S409 (2006)Google Scholar
  16. 16.
    A.D. Bandrauk, J. Manz, M. Vrakking, Chem. Phys. 366, 1 (2009)Google Scholar
  17. 17.
    Z. Chang, “Fundamentals of Attosecond Optics” (CRC Press, Taylor-Francis, USA, 2011)Google Scholar
  18. 18.
    A. Zavriyev, P.H. Bucksbaum, in “Molecules in Laser Fields”, Chap. 2, ed. by A.D. Bandrauk (Marcel Dekker Inc., NY, 1994)Google Scholar
  19. 19.
    A.D. Bandrauk et al, in “Molecules in Laser Fields”, Chap. 4, ed. by A.D. Bandrauk (Marcel Dekker Inc., NY 1994)Google Scholar
  20. 20.
    R.S. Mulliken, J. Chem. Phys. 7, 20 (1939)Google Scholar
  21. 21.
    C. Cornaggia in “Progress in Ultrafast Intense Laser Science”, vol VI, Chap. 1, ed. by K. Yamanouchi et al (Springer, Tokyo 2011)Google Scholar
  22. 22.
    T. Zuo, A.D. Bandrauk, Phys. Rev. A54, 2511 (1995); 54, 3254 (1996)Google Scholar
  23. 23.
    S. Chelkowski, A.D. Bandrauk, J. Phys. B 28, L723 (1995)Google Scholar
  24. 24.
    T. Seideman, M.Y. Ivanov, P.B. Corkum, Phys. Rev. Lett. 75, 2819 (1995)Google Scholar
  25. 25.
    N.B. Delone, V.P. Krainov, “Multiphoton Processes in Atoms” (Springer, Berlin, 1994)Google Scholar
  26. 26.
    M.J. DeWitt, R.J. Levis, J. Chem. Phys. 108, 1, (1998)Google Scholar
  27. 27.
    T.F. Gallagher, Phys. Rev. Lett. 61, 2304 (1988)Google Scholar
  28. 28.
    S. Chelkowski, J. Goudreault, A.D. Bandrauk, J. Mod. Opt. 52, 411 (2005)Google Scholar
  29. 29.
    A.D. Bandrauk, S. Chelkowski, K.J. Yuan, Intl. Rev. Atom Molec. Phys. (2011)Google Scholar
  30. 30.
    G. Mourou, T. Tajima, Science 331, 41 (2011)Google Scholar
  31. 31.
    U.W. Rathe, C.H. Keittel, M. Protopapas, P.L. Knight, J. Phys. B 30, L531 (1997)Google Scholar
  32. 32.
    S. Selsto, E. Lindroth, J. Bengtsson, Phys. Rev. A79, 043418 (2009)Google Scholar
  33. 33.
    A. Maquet, R. Grobe, J. Mod. Opt. 49, 2001 (2002)Google Scholar
  34. 34.
    A.D. Bandrauk, H. Kono, in “Advances in Multiphoton Processes”, vol 15, ed. by S.H. Lin (World Scientific, Singapore, 2000)Google Scholar
  35. 35.
    P. Dietrich, M.Y. Ivanov, F.A. Ilkov, P.B. Corkum, Phys. Rev. Lett. 77, 4150 (1996)Google Scholar
  36. 36.
    K. Codling, L.J. Frasinski, P.A. Hatherly, J. Phys. B22, L321 (1989)Google Scholar
  37. 37.
    J.H. Posthumus et al., J. Phys. B. 28, L 349 (1995)Google Scholar
  38. 38.
    J.H. Posthumus, Rep. Prog. Phys. 67, 623 (2004)Google Scholar
  39. 39.
    H. Schröder, C.J. Uiterwaal, K.L. Kompa, Laser Phys. 10, 749 (2000)Google Scholar
  40. 40.
    G.L. Kamta, A.D. Bandrauk, Phys. Rev. A 75, 041401 (2007)Google Scholar
  41. 41.
    H.Z. Lu, A.D. Bandrauk, J. Molec. Str. (TheoChem) 547, 97 (2001)Google Scholar
  42. 42.
    H. He et al, Phys. Rev. A. 84,033418 (2011)Google Scholar
  43. 43.
    H. Sabzyan, M. Vaface, Phys. Rev. A. 71, 063404 (2005)Google Scholar
  44. 44.
    M. Schmidt, D. Normand, C. Cornaggia, Phys. Rev. A. 50, 5037 (1994); ibid, 53, 1958 (1996)Google Scholar
  45. 45.
    G.N. Gibson, M. Li, C. Guo, J. Neira, Phys. Rev. Lett. 79, 2022 (1994)Google Scholar
  46. 46.
    K. Yamanouchi, Science 295, 1659 (2002)Google Scholar
  47. 47.
    G.L. Kamta, A.D. Bandrauk, Phys. Rev. Lett. 94, 203003 (2005); Phys. Rev. A 76, 053409 (2007)Google Scholar
  48. 48.
    X.B. Bian, A.D. Bandrauk, Phys. Rev. Lett. 105, 093903 (2010)Google Scholar
  49. 49.
    Y.J. Jiu, X.M. Tong, N. Toshima, Phys. Rev. A. 81, 013408 (2010)Google Scholar
  50. 50.
    A.D. Bandrauk, H.Z. Lu, Phys. Rev. A. 62, 053406 (2000)Google Scholar
  51. 51.
    D. Pavicic, A. Kiess, T.W. Hänsch, H. Figger, Phys. Rev. Lett. 94, 163002 (2005)Google Scholar
  52. 52.
    K. Sandig, H. Figger, T.W. Hänsch, Phys. Rev. Lett. 85, 4876 (2000)Google Scholar
  53. 53.
    V. Serov et al., Phys. Rev. A. 72, 033413 (2005)Google Scholar
  54. 54.
    E. Constant, H. Staplefeldt, P.B. Corkum, Phys. Rev. Lett. 76, 4140 (1996)Google Scholar
  55. 55.
    J.N. Gibson, M. Li, C. Zuo, J. Neira, Phys. Rev. Lett. 79, 2002 (1997)Google Scholar
  56. 56.
    A. Hishikawa, A. Iwamae, K. Yamanouchi, Phys. Rev. Lett. 83, 1127 (1999)Google Scholar
  57. 57.
    C. Siedschlag, J.M. Rost, Phys. Rev. A 60, 2215 (1999); Phys Rev Lett. 89, 173401 (2002); Few-Body Systems, 31, 211 (2002)Google Scholar
  58. 58.
    I. Last, J. Jortner, Phys. Rev. A. 60, 2215 (1999)Google Scholar
  59. 59.
    A.D. Bandrauk, G. Paramonov, AIP Conf. Proc. 1209, 7 (2010)Google Scholar
  60. 60.
    Y. Sato, H. Kono, S. Koseki, Y. Fujimura, J. Am. Chem. Soc. 125, 8019 (2003)Google Scholar
  61. 61.
    Y. Nagata et al., Phys. Rev. Lett. 71, 3774 (1993)Google Scholar
  62. 62.
    L.N. Gaier, J. Mod. Opt. 52, 1019 (2005)Google Scholar
  63. 63.
    A.D. Bandrauk, J. Ruel, Phys. Rev. A. 59, 2153 (1999)Google Scholar
  64. 64.
    H. Yu, T. Zuo, A.D. Bandrauk, J. Phys. B. 31, 1533 (1998)Google Scholar
  65. 65.
    I. Ben-Itzhak et al., Phys. Rev. A. 78, 063419 (2008)Google Scholar
  66. 66.
    M. Ergler et al., Phys. Rev. Lett. 95, 093001 (2005)Google Scholar
  67. 67.
    A.D. Bandrauk, S. Chelkowski, I. Kawata, Phys. Rev. A. 67, 013407 (2003)Google Scholar
  68. 68.
    A. Staudte et al., Phys. Rev. Lett. 98, 073003 (2007)Google Scholar
  69. 69.
    S. Chelkowski et al., Phys. Rev. A. 76, 013405 (2007)Google Scholar
  70. 70.
    F. He, A. Becker, U. Thumm, Phys. Rev. Lett. 101, 213002 (2008)Google Scholar
  71. 71.
    N. Takemoto, A. Becker, Phys. Rev. Lett. 105, 203004 (2010), Phys Rev A 84,023401(2011)Google Scholar
  72. 72.
    T. Zuo, A.D. Bandrauk, P. Corkum, Chem. Phys Lett. 259, 313 (1996)Google Scholar
  73. 73.
    D. N. Fittinghoff, P.R. Bolton, B. Chang, R.C. Kulander, Phys. Rev. Lett. 69, 2642Google Scholar
  74. 74.
    A.D. Bandrauk, S. Chelkowski, H. Yu, E. Constant, Phys. Rev. A. 56, 2537 (1997)Google Scholar
  75. 75.
    P. Moreno, L. Playa, L. Roso, Phys. Rev. A. 55, 1593 (1997)Google Scholar
  76. 76.
    A.D. Bandrauk, S. Barmaki, G.L. Kamta, Phys. Rev. Lett. 98, 013001 (2007)Google Scholar
  77. 77.
    H. Yu, T. Zuo, A.D. Bandrauk, Phys. Rev. A 54, 3290 (1996); J Phys B 31, 1533 (1998)Google Scholar
  78. 78.
    I. Kawata et al., Phys. Rev. A 62, 031401 (2000); 66, 043403 (2002)Google Scholar
  79. 79.
    A. Saenz, Phys. Rev. A 61, 051402 (2000); 66, 063407 (2002)Google Scholar
  80. 80.
    I. Kawata, H. Kono, A.D. Bandrauk, Phys. Rev. A. 64, 043411 (2001)Google Scholar
  81. 81.
    D. Tchitchekova, S.C. Chelkowski, A.D. Bandrauk, J. Phys. B. 44, 065601 (2011)Google Scholar
  82. 82.
    S. Saugaut et al., Phys. Rev. Lett. 98, 253003 (2007)Google Scholar
  83. 83.
    S. Sukiasyan et al., Phys. Rev. Lett. 102, 223002 (2009)Google Scholar
  84. 84.
    E. Dehghanian, A.D. Bandrauk, G.L. Kamta, Phys. Rev. A. 81, 061403 (2010)Google Scholar
  85. 85.
    A. Tong et al., Opt. Exp. 18, 9064 (2010)Google Scholar
  86. 86.
    S.A. Trushin, W.E. Schmid, W. Fuss, J. Phys. B. 44, 165602 (2011)Google Scholar
  87. 87.
    G.N. Gibson, M. Li, C. Guo, J.P. Nibarger, Phys. Rev. A. 58, 4123 (1998)Google Scholar
  88. 88.
    I.V. Litvinyuk et al., Phys. Rev. Lett. 94, 033003 (2005)Google Scholar
  89. 89.
    Y. Liu et al., Phys. Rev. Lett. 106, 073004 (2011)Google Scholar
  90. 90.
    J.C. Slater, Quantum Theory of Molecules and Solids, vol I (McGraw-Hill, NY, 1963)Google Scholar
  91. 91.
    S. Chelkowski, A.D. Bandrauk, Phys. Rev. Lett. 101, 153901 (2008)Google Scholar
  92. 92.
    E. Dehghanian, A.D. Bandrauk, G.L. Kamta, Phys. Rev. A 81, 061403(R) (2010)Google Scholar
  93. 93.
    T.A. Green et al., J. Chem. Phys. 61, 5156 (1974)Google Scholar
  94. 94.
    A. Etches, L.B. Madsen, J. Phys. B. 43, 155602 (2005)Google Scholar
  95. 95.
    F. Légaré et al., Phys. Rev. A 72, 052717 (2005); A 71, 013415 (2005)Google Scholar
  96. 96.
    A. Hishikawa et al., Phys. Rev. Lett. 99, 258302 (2007)Google Scholar
  97. 97.
    I. Bocharova et al., Phys. Rev. Lett. 107, 063201 (2011)Google Scholar
  98. 98.
    A. Hishikawa, A. Iwamae, K. Yamanouchi, Phys. Rev. Lett. 83, 1127 (1999)Google Scholar
  99. 99.
    J.P. Brichta, S.J. Walker, R. Helsten, J.H. Sanderson, J. Phys. B. 40, 117 (2007)Google Scholar
  100. 100.
    E.P. Fowe, A.D. Bandrauk, Phys. Rev. A. 81, 023411 (2010)Google Scholar
  101. 101.
    F. Légaré et al., Phys. Rev. Lett. 91, 093002 (2003)Google Scholar
  102. 102.
    J.P. Brichta, A.N. Seaman, J.H. Sanderson, Comput. Phys. Commun. 180, 197 (2009)Google Scholar
  103. 103.
    M. Okunishi et al., J. Chem. Phys. 127, 064310 (2007)Google Scholar
  104. 104.
    M. Meckel et al., Science 320, 1478 (2008)Google Scholar
  105. 105.
    Y. Chen, J. Chen, J. Liu, Phys. Rev. A. 74, 063405 (2006)Google Scholar
  106. 106.
    Y. Huismans et al., Science 331, 61 (2011)Google Scholar
  107. 107.
    M. Abel et al., Laser Photonics Rev. 5, 352 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de chimie théoriqueUniversité de SherbrookeQuébecCanada
  2. 2.Institut National de Recherche ScientifiqueCentre Énergie Matériaux et TélécommunicationsVarennes, QuébecCanada

Personalised recommendations