Advertisement

Ordinals and Knuth-Bendix Orders

  • Sarah Winkler
  • Harald Zankl
  • Aart Middeldorp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7180)

Abstract

In this paper we consider a hierarchy of three versions of Knuth-Bendix orders. (1) We show that the standard definition can be (slightly) simplified without affecting the ordering relation. (2) For the extension of transfinite Knuth-Bendix orders we show that transfinite ordinals are not needed as weights, as far as termination of finite rewrite systems is concerned. (3) Nevertheless termination proving benefits from transfinite ordinals when used in the setting of general Knuth-Bendix orders defined over a weakly monotone algebra. We investigate the relationship to polynomial interpretations and present experimental results for both termination analysis and ordered completion. For the latter it is essential that the order is totalizable on ground terms.

Keywords

Knuth-Bendix order termination ordered completion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmair, L., Dershowitz, N., Plaisted, D.: Completion without failure. In: Kaci, H.A., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures 1989. Rewriting Techniques of Progress in Theoretical Computer Science, vol. 2, pp. 1–30. Academic Press (1989)Google Scholar
  2. 2.
    Dershowitz, N.: Orderings for term-rewriting systems. TCS 17, 279–301 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dershowitz, N.: Termination of rewriting. J. Symb. Comp. 3(1-2), 69–116 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dick, J., Kalmus, J., Martin, U.: Automating the Knuth Bendix ordering. AI 28, 95–119 (1990)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ferreira, M., Zantema, H.: Total termination of term rewriting. AAECC 7(2), 133–162 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Geser, A.: An improved general path order. AAECC 7(6), 469–511 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Goodstein, R.L.: On the restricted ordinal theorem. J. of Symb. Log. 9(2), 33–41 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hong, H., Jakuš, D.: Testing positiveness of polynomials. JAR 21(1), 23–38 (1998)CrossRefGoogle Scholar
  9. 9.
    Jech, T.: Set Theory. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, New York (1970)Google Scholar
  11. 11.
    Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Kovács, L., Moser, G., Voronkov, A.: On transfinite knuth-bendix orders. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 23. LNCS, vol. 6803, pp. 384–399. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Ludwig, M., Waldmann, U.: An Extension of the Knuth-Bendix Ordering with LPO-Like Properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 348–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    McCune, B.: Otter 3.0 reference manual and guide. Technical Report ANL-94/6, Argonne National Laboratory (1994)Google Scholar
  15. 15.
    Middeldorp, A., Zantema, H.: Simple termination of rewrite systems. TCS 175(1), 127–158 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Neurauter, F., Middeldorp, A., Zankl, H.: Monotonicity Criteria for Polynomial Interpretations over the Naturals. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 502–517. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  18. 18.
    Steinbach, J.: Extensions and Comparison of Simplification Orders. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 434–448. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  19. 19.
    Steinbach, J., Zehnter, M.: Vademecum of polynomial orderings. Technical Report SR-90-03, Universität Kaiserslautern (1990)Google Scholar
  20. 20.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF and CNF parts, v3.5.0. JAR 43(4), 337–362 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    TeReSe: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press (2003)Google Scholar
  22. 22.
    Winkler, S., Middeldorp, A.: Termination Tools in Ordered Completion. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 518–532. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. JAR 43(2), 173–201 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Zankl, H., Middeldorp, A.: Satisfiability of non-linear (Ir)rational arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 481–500. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sarah Winkler
    • 1
  • Harald Zankl
    • 1
  • Aart Middeldorp
    • 1
  1. 1.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria

Personalised recommendations