Advertisement

The TPTP Typed First-Order Form with Arithmetic

  • Geoff Sutcliffe
  • Stephan Schulz
  • Koen Claessen
  • Peter Baumgartner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7180)

Abstract

The TPTP World is a well established infrastructure supporting research, development, and deployment of Automated Theorem Proving systems. Recently, the TPTP World has been extended to include a typed first-order logic, which in turn has enabled the integration of arithmetic. This paper describes these developments.

Keywords

Function Symbol Automate Reasoning Predicate Symbol Unary Predicate Linear Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarpour, B., Paulson, L.: MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions. Journal of Automated Reasoning 44(3), 175–205 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 84–99. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hierachic First-Order Theories. Applicable Algebra in Engineering, Communication and Computing 5(3/4), 193–212 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (2010)Google Scholar
  5. 5.
    Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Baumgartner, P., Fuchs, A., Tinelli, C.: ME(LIA) - Model Evolution with Linear Integer Arithmetic Constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Baumgartner, P., Pelzer, B., Tinelli, C.: Model Evolution with Equality - Revised and Implemented. Journal of Symbolic Computation (2011) (page to appear)Google Scholar
  8. 8.
    Benzmüller, C.E., Rabe, F., Sutcliffe, G.: THF0 – The Core of the TPTP Language for Higher-Order Logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Boute, R.: The Euclidean Definition of the Functions div and mod. ACM Transactions on Programming Languages and Systems 14(2), 127–144 (1992)CrossRefGoogle Scholar
  10. 10.
    Brown, C.E.: QEPCAD B - A Program for Computing with Semi-algebraic sets using CADs. ACM SIGSAM Bulletin 37(4), 97–108 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Claessen, K., Sörensson, N.: New Techniques that Improve MACE-style Finite Model Finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications (2003)Google Scholar
  12. 12.
    Cohn, A.G.: Many Sorted Logic = Unsorted Logic + Control? In: Bramer, M. (ed.) Proceedings of Expert Systems 1986, The 6th Annual Technical Conference on Research and Development in Expert Systems, pp. 184–194. Cambridge University Press (1986)Google Scholar
  13. 13.
    Cohn, A.G.: A More Expressive Formulation of Many Sorted Logic. Journal of Automated Reasoning 3(2), 113–200 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Gallier, J.: Logic for Computer Science: Foundations of Automated Theorem Proving. Computer Science and Technology Series. Wiley (1986)Google Scholar
  16. 16.
    Halpern, J.: Presburger Arithmetic With Unary Predicates is \(\Pi_1^1\)-Complete. Journal of Symbolic Logic 56(2), 637–642 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Harrison, J.: Email to Cesare TinelliGoogle Scholar
  18. 18.
    Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press (2009)Google Scholar
  19. 19.
    Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS (LNAI), vol. 4646, pp. 223–237. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    McCune, W.W.: Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263, Argonne National Laboratory, Argonne, USA (2003)Google Scholar
  21. 21.
    Nipkow, T.: Linear Quantifier Elimination. Journal of Automated Reasoning 45(2), 189–212 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) Proceedings of the FLoC 2006 Workshop on Empirically Successful Computerized Reasoning, 3rd International Joint Conference on Automated Reasoning. CEUR Workshop Proceedings, vol. 192, pp. 19–33 (2006)Google Scholar
  23. 23.
    Pugh, W.: The Omega Test: A Fast and Practical Integer Programming Algorithm for Dependence Analysis. Communications of the ACM 31(8), 4–13 (1992)Google Scholar
  24. 24.
    Ranise, S., Tinelli, C.: The SMT-LIB Format: An Initial Proposal. In: Nebel, B., Swartout, W. (eds.) Proceedings of the Workshop on Pragmatics of Decision Procedures in Automated Reasoning (2003)Google Scholar
  25. 25.
    Rümmer, P.: A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Schmidt-Schauss, M.: A Many-Sorted Calculus with Polymorphic Functions Based on Resolution and Paramodulation. In: Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 1162–1168 (1985)Google Scholar
  27. 27.
    Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126 (2002)zbMATHGoogle Scholar
  28. 28.
    Stickel, M.E.: SNARK - SRI’s New Automated Reasoning Kit, http://www.ai.sri.com/ stickel/snark.htmlGoogle Scholar
  29. 29.
    Sutcliffe, G.: The SZS Ontologies for Automated Reasoning Software. In: Sutcliffe, G., Rudnicki, P., Schmidt, R., Konev, B., Schulz, S. (eds.) Proceedings of the LPAR Workshops: Knowledge Exchange: Automated Provers and Proof Assistants, and The 7th International Workshop on the Implementation of Logics. CEUR Workshop Proceedings, vol. 418, pp. 38–49 (2008)Google Scholar
  30. 30.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)zbMATHCrossRefGoogle Scholar
  31. 31.
    Sutcliffe, G.: Proceedings of the 5th IJCAR ATP System Competition. Edinburgh, United Kingdom (2010)Google Scholar
  32. 32.
    Sutcliffe, G.: The TPTP World – Infrastructure for Automated Reasoning. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 1–12. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Sutcliffe, G.: Proceedings of the CADE-23 ATP System Competition. Wroclaw, Poland (2011)Google Scholar
  34. 34.
    Sutcliffe, G.: The CADE-23 Automated Theorem Proving System Competition - CASC-23. AI Communications (page to appear, 2012)Google Scholar
  35. 35.
    Sutcliffe, G., Suda, M., Teyssandier, A., Dellis, N., de Melo, G.: Progress Towards Effective Automated Reasoning with World Knowledge. In: Murray, C., Guesgen, H. (eds.) Proceedings of the 23rd International FLAIRS Conference, pp. 110–115. AAAI Press (2010)Google Scholar
  36. 36.
    Walther, C.: A Many-Sorted Calculus Based on Resolution and Paramodulation. In: Bundy, A. (ed.) Proceedings of the 8th International Joint Conference on Artificial Intelligence, pp. 882–891 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Geoff Sutcliffe
    • 1
  • Stephan Schulz
    • 2
  • Koen Claessen
    • 3
  • Peter Baumgartner
    • 4
  1. 1.University of MiamiUSA
  2. 2.Technische Universität MünchenGermany
  3. 3.Chalmers UniversitySweden
  4. 4.NICTA and ANUAustralia

Personalised recommendations