Advertisement

Abstract

This paper introduces a new decision procedure for PLTL based on labelled superposition. Its main idea is to treat temporal formulas as infinite sets of purely propositional clauses over an extended signature. These infinite sets are then represented by finite sets of labelled propositional clauses. The new representation enables the replacement of the complex temporal resolution rule, suggested by existing resolution calculi for PLTL, by a fine grained repetition check of finitely saturated labelled clause sets followed by a simple inference. The completeness argument is based on the standard model building idea from superposition. It inherently justifies ordering restrictions, redundancy elimination and effective partial model building. The latter can be directly used to effectively generate counterexamples of non-valid PLTL conjectures out of saturated labelled clause sets in a straightforward way.

Keywords

Temporal Logic Inference Rule Decision Procedure Temporal Shift Empty Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmair, L., Ganzinger, H.: On Restrictions of Ordered Paramodulation with Simplification. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 427–441. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier and MIT Press (2001)Google Scholar
  3. 3.
    Cavalli, A., del Cerro, L.: A Decision Method for Linear Temporal Logic. In: Shostak, R.E. (ed.) CADE 1984. LNCS, vol. 170, pp. 113–127. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  4. 4.
    Degtyarev, A., Fisher, M., Konev, B.: A Simplified Clausal Resolution Procedure for Propositional Linear-Time Temporal Logic. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 85–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Dixon, C.: Search Strategies for Resolution in Temporal Logics. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 673–687. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Trans. Comput. Logic 2, 12–56 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fernández Gago, M.C., Fisher, M., Dixon, C.: Algorithms for Guiding Clausal Temporal Resolution. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 235–252. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Hustadt, U., Konev, B.: TRP++ 2.0: A Temporal Resolution Prover. In: Baader, F. (ed.) CADE-19. LNCS (LNAI), vol. 2741, pp. 274–278. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Hustadt, U., Konev, B., Schmidt, R.A.: Deciding Monodic Fragments by Temporal Resolution. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 204–218. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Hustadt, U., Schmidt, R.: Scientific benchmarking with temporal logic decision procedures. In: KR 2002, pp. 533–546. Morgan Kaufmann (2002)Google Scholar
  11. 11.
    Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Mechanising first-order temporal resolution. Inf. Comput. 199, 55–86 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Lev-Ami, T., Weidenbach, C., Reps, T., Sagiv, M.: Labelled Clauses. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 311–327. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Ludwig, M., Hustadt, U.: Fair Derivations in Monodic Temporal Reasoning. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 261–276. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Ludwig, M., Hustadt, U.: Resolution-based model construction for PLTL. In: TIME 2009, pp. 73–80. IEEE Computer Society (2009)Google Scholar
  15. 15.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)Google Scholar
  16. 16.
    Rozier, K.Y., Vardi, M.Y.: LTL Satisfiability Checking. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Schwendimann, S.: A New One-Pass Tableau Calculus for PLTL. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32, 733–749 (1985)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Suda, M., Weidenbach, C.: Prototype implementation of LPSup. (2011), http://www.mpi-inf.mpg.de/~suda/supLTL.html
  20. 20.
    Suda, M., Weidenbach, C.: Labelled Superposition for PLTL. Research Report MPI-I-2012-RG1-001, Max-Planck-Institut für Informatik, Saarbrücken (2012)Google Scholar
  21. 21.
    Venkatesh, G.: A Decision Method for Temporal Logic Based on Resolution. In: Maheshwari, S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 272–289. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  22. 22.
    Wolper, P.: The tableau method for temporal logic: An overview. Logique et Analyse 28, 119–136 (1985)MathSciNetMATHGoogle Scholar
  23. 23.
    Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Suda
    • 1
    • 2
    • 3
  • Christoph Weidenbach
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Saarland UniversitySaarbrückenGermany
  3. 3.Charles UniversityPragueCzech Republic

Personalised recommendations