Advertisement

Towards Algorithmic Cut-Introduction

  • Stefan Hetzl
  • Alexander Leitsch
  • Daniel Weller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7180)

Abstract

We describe a method for abbreviating an analytic proof in classical first-order logic by the introduction of a lemma. Our algorithm is based on first computing a compressed representation of the terms present in the analytic proof and then a cut-formula that realizes such a compression. This method can be applied to the output of automated theorem provers, which typically produce analytic proofs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baaz, M., Zach, R.: Algorithmic Structuring of Cut-free Proofs. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 29–42. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Finger, M., Gabbay, D.: Equal Rights for the Cut: Computable Non-analytic Cuts in Cut-based Proofs. Logic Journal of the IGPL 15(5–6), 553–575 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210, 405–431 (1934–1935)Google Scholar
  4. 4.
    Hetzl, S.: Describing proofs by short tautologies. Annals of Pure and Applied Logic 159(1–2), 129–145 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Hetzl, S.: Applying Tree Languages in Proof Theory. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Heidelberg (2012)Google Scholar
  6. 6.
    Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction. technical report, http://www.logic.at/people/hetzl/
  7. 7.
    Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: Herbrand Sequent Extraction. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 462–477. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Miller, D., Nigam, V.: Incorporating Tables into Proofs. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 466–480. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Orevkov, V.P.: Lower bounds for increasing complexity of derivations after cut elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta 88, 137–161 (1979)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Pudlák, P.: The Lengths of Proofs. In: Buss, S. (ed.) Handbook of Proof Theory, pp. 547–637. Elsevier (1998)Google Scholar
  11. 11.
    Statman, R.: Lower bounds on Herbrand’s theorem. Proceedings of the American Mathematical Society 75, 104–107 (1979)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press (2000)Google Scholar
  13. 13.
    Vyskočil, J., Stanovský, D., Urban, J.: Automated Proof Compression by Invention of New Definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 447–462. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Woltzenlogel Paleo, B.: Atomic Cut Introduction by Resolution: Proof Structuring and Compression. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 463–480. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Hetzl
    • 1
  • Alexander Leitsch
    • 2
  • Daniel Weller
    • 1
  1. 1.Institut für Diskrete Mathematik und GeometrieTechnische Universität WienAustria
  2. 2.Institut für ComputersprachenTechnische Universität WienAustria

Personalised recommendations