Support Vector Machines in Biomedical and Biometrical Applications

  • Krzysztof A. Cyran
  • Jolanta Kawulok
  • Michal Kawulok
  • Magdalena Stawarz
  • Marcin Michalak
  • Monika Pietrowska
  • Piotr Widłak
  • Joanna Polańska
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 13)

Abstract

In the chapter, a background review material concerning applications of the kernel methods in computational biology and biometry is illustrated by the case studies concerning the proteomic spectra analysis to find diagnostic biomarkers and performing case-control discrimination as well as the face recognition problem, which is situated among the most investigated biometric methods. These case studies, representing the state-of-the-art in applications of the support vector machines (SVM) in biomedical and biometrical applications, are the examples of a research work conducted by computer scientists, bioinformaticians, and biostatisticians from the Faculty of Automatic Control, Electronics and Computer Science at Silesian University of Technology in a collaboration with clinicists from the Institute of Oncology in Gliwice, Poland.

Keywords

Support Vector Machine Face Recognition Support Vector Regression Face Detection Feature Extraction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature (422) (2003)Google Scholar
  2. 2.
    Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Transactions on Neural Networks 13, 1450–1464 (2002)CrossRefGoogle Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 711–720 (1997)CrossRefGoogle Scholar
  4. 4.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, pp. 144–152 (1992)Google Scholar
  5. 5.
    Box, G.E.P., Cox, D.R.: An analysis of transformations. JSTOR 62(2), 211–252 (1964)MathSciNetGoogle Scholar
  6. 6.
    Cao, L.J., Tay, F.E.H.: Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks 14(6), 1506–1518 (2003)CrossRefGoogle Scholar
  7. 7.
    Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. In: Advances in Neural Information Processing Systems 13: Proceedings of the 2000 Conference, p. 409. The MIT Press (2001)Google Scholar
  8. 8.
    Chapelle, O.: Training a support vector machine in the primal. Neural Computation 19(5), 1155–1178 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Chen, X., Yang, J., Liang, J., Ye, Q.: Smooth twin support vector regression. Neural Computing and Applications, 1–9 (2010), http://dx.doi.org/10.1007/s00521-010-0454-9
  10. 10.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press (2000)Google Scholar
  11. 11.
    Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems 9, pp. 155–161. MIT Press, Cambridge (1997)Google Scholar
  12. 12.
    Fernández, R.: Predicting time series with a local support vector regression machine. In: Proceedings of the ECCAI Advanced Course on Artificial Intelligence, ACAI 1999 (1999)Google Scholar
  13. 13.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Co. (1989)Google Scholar
  14. 14.
    Gong, S., McKenna, S.J., Psarrou, A.: Dynamic Vision From Images to Face Recognition. Imperial College Press (1999)Google Scholar
  15. 15.
    Grother, P., Micheals, R., Phillips, P.J.: Face recognition vendor test 2002 performance metrics. In: Proceedings of the Fourth International Conference on Audio-Visual Based Person Authentication (2003)Google Scholar
  16. 16.
    Hao, P.-Y.: New support vector algorithms with parametric insensitive/margin model. Neural Networks 23, 60–73 (2010)CrossRefGoogle Scholar
  17. 17.
    Hastie, T., Tibshrani, R., Friedman, J.: Clinical Proteomics: From Diagnosis to Therapy. Springer (2001)Google Scholar
  18. 18.
    Hilario, M., Kalousis, A., Pellegrini, C., Müller, M.: Processing and classification of protein mass spectra. Bioinformatics 25(3), 409–449 (2006)Google Scholar
  19. 19.
    Hochreiter, S., Obermayer, K.: Gene selection for microarray data. In: Scholkopf, B., Tsuda, K., Vert, J.P. (eds.) Kernel Methods in Computational Biology, pp. 319–355. MIT Press (2004)Google Scholar
  20. 20.
    Huang, J., Blanz, V., Heisele, B.: Face Recognition using Component-based SVM Classification and Morphable Models. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 334–341. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Joachims, T.: Training linear svms in linear time. In: Eliassi-Rad, T., Ungar, L.H., Craven, M., Gunopulos, D. (eds.) KDD, pp. 217–226. ACM (2006)Google Scholar
  24. 24.
    Kanji, G.K.: 100 statistical tests, 3rd edn. SAGE Publications Ltd (2006)Google Scholar
  25. 25.
    Karpievitch, Y.V., Hill, E.G., Smolka, A.J., Morris, J.S., Coombes, K.R., Baggerly, K.A., Almeida, J.S.: Prepms: Tof ms data graphical preprocessing tool. Bioinformatics 23(2), 264–265 (2007)CrossRefGoogle Scholar
  26. 26.
    Kawulok, M., Szymanek, J.: Algorithm for precise frontal face detection. Studia Informatica 30, 341–354 (2009)Google Scholar
  27. 27.
    Kawulok, M., Wu, J., Hancock, E.R.: Supervised relevance maps for increasing the distinctiveness of facial images. Pattern Recognition 44(4), 929–939 (2011)CrossRefGoogle Scholar
  28. 28.
    Kin, T., Kato, T., Tsuda, K.: Protein classification via kernel matrix completion. In: Scholkopf, B., Tsuda, K., Vert, J.P. (eds.) Kernel Methods in Computational Biology, pp. 261–274. MIT Press (2004)Google Scholar
  29. 29.
    Krishnapuram, B., Carin, L., Hartemink, A.: Gene expression analysis: Joint feature selection and classifier design. In: Scholkopf, B., Tsuda, K., Vert, J.P. (eds.) Kernel Methods in Computational Biology, pp. 299–317. MIT Press (2004)Google Scholar
  30. 30.
    Lee, Y.J., Huang, S.Y.: Reduced support vector machines: A statistical theory. IEEE Transactions on Neural Networks 18(1), 1–13 (2006)CrossRefGoogle Scholar
  31. 31.
    Leski, J.: On support vector regression machines with linguistic interpretation of the kernel matrix. Fuzzy Sets and Systems 157, 1092–1113 (2006)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Lilliefors, H.L.: On the kolmogorov–smirnov test for normality with mean and variance unknown. JASA 62, 399–402 (1967)Google Scholar
  33. 33.
    Liu, Q., Krishnapuram, B., Pratapa, P., Liao, X., Hartemink, E., Carin, L.: Identification of differentially expressed proteins using maldi-tof mass spectra. In: Asilomar Conference: Biological Aspects of Signal Processing (2003)Google Scholar
  34. 34.
    Maio, D., Maltoni, D.: Real-time face location on gray-scale static images. Pattern Recognition 33, 1525–1539 (2000)CrossRefGoogle Scholar
  35. 35.
    Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., Kobayashi, R.: Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 21(9), 1764–1775 (2005)CrossRefGoogle Scholar
  36. 36.
    Na, S., Paek, E.: Quality assessment of tandem mass spectra based on cumulative intensity normalization. J. Proteome Res. 5(12), 3241–3248 (2006)CrossRefGoogle Scholar
  37. 37.
    Olofsson, P.: Probability, Statistics, and Stochastic Processes. John Wiley & Sons (2005)Google Scholar
  38. 38.
    Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 130–136 (1997)Google Scholar
  39. 39.
    Osuna, E., Freund, R., Girosi, F.: Training Support Vector Machines: an application to face detection. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 130–136 (1997)Google Scholar
  40. 40.
    Petricoin, E.F., Ardekani, A.M., Levine, P.J., Hitt, B.A., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., Liotta, L.: Use of proteomic patterns in serum to identify ovarian cancer. The Lancet 359, 527–577 (2002)CrossRefGoogle Scholar
  41. 41.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 947–954 (2005)Google Scholar
  42. 42.
    Phillips, P., Grother, P., Micheals, R., Blackburn, D., Tabassi, E., Bone, J.: Face Recognition Vendor Test 2002: Evaluation Report. NISTIR 6965 (2003)Google Scholar
  43. 43.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing J. 16(5), 295–306 (1998)CrossRefGoogle Scholar
  44. 44.
    Phillips, P.J.: Support vector machines applied to face recognition. In: Advances in Neural Information Processing Systems 11, pp. 803–809. MIT Press (1999)Google Scholar
  45. 45.
    Pietrowska, M., Marczak, L., Polanska, J., Behrendt, K., Nowicka, E., Walaszczyk, A., Chmura, A., Deja, R., Stobiecki, M., Polanski, A., Tarnawski, R., Widlak, P.: Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer. J. Transl. Med. 7, 60 (2009)CrossRefGoogle Scholar
  46. 46.
    Pietrowska, M., Marczak, L., Suwinski, R., Stobiecki, M., Polanska, J., Polanski, A., Widlak, P., Gawkowska-Suwinska, M., Drosik, A., Walaszczyk, A.: Application of mass spectrometry-based serum proteome pattern analysis in identification of lung cancer patients. J. Thorac. Oncol. 5(5, suppl. 1), S60 (2010); Abstract book, 2nd European Lung Cancer Conference, Geneva, Switzerland, April 28- May 1 (2010) Google Scholar
  47. 47.
    Polanska, J., Widnak, P., Rzeszowska-Wolny, J., Kimmel, M., Polanski, A.: Gaussian mixture decomposition of time-course dna microarray data. In: Mathematical Modeling of Biological Systems, Modeling and Simulation in Science, Engineering and Technology, vol. 1, pp. 351–359. Birkhäuser, Boston (2007)Google Scholar
  48. 48.
    Polanski, A., Kimmel, M.: Bioinformatics. Springer (2007)Google Scholar
  49. 49.
    Ralaivola, L., d’Alché-Buc, F.: Incremental Support Vector Machine Learning: A Local Approach. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 322–330. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  50. 50.
    Ratsch, G.: Accurate splice site detection for caenorhabditis elegans. In: Scholkopf, B., Tsuda, K., Vert, J.P. (eds.) Kernel Methods in Computational Biology, pp. 277–298. MIT Press (2004)Google Scholar
  51. 51.
    Roobaert, D.: DirectSVM: A fast and simple support vector machine perceptron. In: Proceedings of the 2000 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing X, vol. 1, pp. 356–365. IEEE (2000)Google Scholar
  52. 52.
    Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)CrossRefGoogle Scholar
  53. 53.
    Schölkopf, B., Bartlett, P.L., Smola, A.J., Williamson, R.C.: Shrinking the tube: A new support vector regression algorithm. In: Kearns, M.J., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems 11, pp. 330–336. The MIT Press (1999)Google Scholar
  54. 54.
    Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Computation 12(5), 1207–1245 (2000)CrossRefGoogle Scholar
  55. 55.
    Shalev-Shwartz, S., Srebro, N.: Svm optimization: inverse dependence on training set size. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, New York, NY, USA, pp. 928–935 (2008)Google Scholar
  56. 56.
    Shin, H., Sampat, M.P., Koomen, J.M., Markey, M.K.: Wavelet-based adaptive denoising and baseline correction for maldi tof ms. OMICS 14(3), 283–295 (2010)CrossRefGoogle Scholar
  57. 57.
    Shipp, M.A., Ross, K.N., Tamayo, P., Weng, A.P., Aguiar, R.C.T., Kutok, J.L., Gaasenbeek, M., Angelo, M., Reich, M., Ray, T.S., Pinkus, G.S., Koval, M.A., Last, K.W., Norton, A., Mesirov, J., Lister, T.A., Neuberg, D.S., Lander, E.S., Aster, J.C., Gloub, T.R.: Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8(1), 68–74 (2002)CrossRefGoogle Scholar
  58. 58.
    Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.Y.H., Goumnerova, L.C., Black, P.M., Lan, C., Allen, J.C., Zagzag, D., Olson, J.M., Curran, T., Wetmore, C., Biegel, J.A., Poggio, T., Mukherjee, S., Rifkin, R., Califano, A., Stolovitzky, G., Louis, D.N., Mesirov, J.P., Lander, E.S., Golub, T.R.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(24), 436–442 (2002)CrossRefGoogle Scholar
  59. 59.
    Steinwart, I.: Sparseness of support vector machines. J. Mach. Learn. Res. 4, 1071–1105 (2003)MathSciNetGoogle Scholar
  60. 60.
    Tay, F.E.H., Cao, L.J.: Modified support vector machines in financial time series forecasting. Neurocomputing 48(1-4), 847–861 (2002)MATHCrossRefGoogle Scholar
  61. 61.
    Turk, M., Pentland, A.: Face Recognition Using Eigenfaces. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)Google Scholar
  62. 62.
    van Eyk, J.E., Dunn, M.J.: Clinical Proteomics: From Diagnosis to Therapy. Wiley-VCH (2008)Google Scholar
  63. 63.
    Veer, L.J.V., Dai, H., van de Vijer, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.j., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(24), 530–536 (2002)CrossRefGoogle Scholar
  64. 64.
    Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  65. 65.
    Vishwanathan, S., Murty, N., et al.: SSVM: a simple SVM algorithm. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002, vol. 3, pp. 2393–2398. IEEE (2002)Google Scholar
  66. 66.
    Wagner, M., Naik, D., Pothen, A.: Protocols for disease classification from mass spectrometry data. Proteomics 3(9), 1692–1698 (2003)CrossRefGoogle Scholar
  67. 67.
    Wilhelm, T., Bohme, H.-J., Gross, H.-M.: Classification of face images for gender, age, facial expression, and identity. In: ICANN, vol. (1), pp. 569–574 (2005)Google Scholar
  68. 68.
    Wiskott, L., Fellous, J., Kruger, N., Malsburg, C.: Face recognition by Elastic Bunch Graph Matching. Tech. Rep. IR-INI 96-08, Ruhr-Universitat Bochum, Germany (1996)Google Scholar
  69. 69.
    Wu, J., Smith, W.A.P., Hancock, E.R.: Facial gender classification using shape-from-shading. Image Vision Comput. 28(6), 1039–1048 (2010)CrossRefGoogle Scholar
  70. 70.
    Yambor, W., Draper, B., Beveridge, R.: Analyzing PCA-based face recognition algorithms: Eigenvector selection and distance measures. Empirical Evaluation Methods in Computer Vision (2002)Google Scholar
  71. 71.
    Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 34–58 (2002)CrossRefGoogle Scholar
  72. 72.
    Yu, W., He, Z., Liu, J., Zhao, H.: Improving mass spectrometry peak detection using multiple peak alignment results. J. Proteome Res. 7(1), 123–129 (2008)CrossRefGoogle Scholar
  73. 73.
    Yu, W., Wu, B., Huang, T., Li, X., Williams, K., Zhao, H.: Statistical methods in proteomics. In: Pham, H. (ed.) Springer Handbook of Engineering Statistics, pp. 623–638. Springer (2006)Google Scholar
  74. 74.
    Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Tech. rep., Microsoft Research (2010)Google Scholar
  75. 75.
    Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A.: Face recognition: A literature survey. Tech. Rep. CARTR-948, Center for Automation Research, University of Maryland, College Park (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Krzysztof A. Cyran
    • 1
  • Jolanta Kawulok
    • 1
  • Michal Kawulok
    • 1
  • Magdalena Stawarz
    • 1
  • Marcin Michalak
    • 1
  • Monika Pietrowska
    • 2
  • Piotr Widłak
    • 2
  • Joanna Polańska
    • 3
  1. 1.Institute of InformaticsGliwicePoland
  2. 2.Institute of OncologyGliwicePoland
  3. 3.Institute of Automatic ControlGliwicePoland

Personalised recommendations