Towards Unconditional Soundness: Computationally Complete Symbolic Attacker

  • Gergei Bana
  • Hubert Comon-Lundh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7215)

Abstract

We consider the question of the adequacy of symbolic models versus computational models for the verification of security protocols. We neither try to include properties in the symbolic model that reflect the properties of the computational primitives nor add computational requirements that enforce the soundness of the symbolic model. We propose in this paper a different approach: everything is possible in the symbolic model, unless it contradicts a computational assumption. In this way, we obtain unconditional soundness almost by construction. And we do not need to assume the absence of dynamic corruption or the absence of key-cycles, which are examples of hypotheses that are always used in related works. We set the basic framework, for arbitrary cryptographic primitives and arbitrary protocols, however for trace security properties only.

Keywords

Encryption Scheme Security Protocol Security Property Atomic Formula Predicate Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abadi, M., Rogaway, P.: Reconciling Two Views of Cryptography. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 3–22. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Abadi, M., Blanchet, B., Comon-Lundh, H.: Models and Proofs of Protocol Security: A Progress Report. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 35–49. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable dolev-yao style cryptographic library. In: Proc. IEEE Computer Security Foundations Workshop (2004)Google Scholar
  4. 4.
    Backes, M., Pfitzmann, B.: Limits of the Cryptographic Realization of Dolev-Yao-Style XOR. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 178–196. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested operations. In: Proc. 10th ACM Concerence on Computer and Communications Security, CCS 2003 (2003)Google Scholar
  6. 6.
    Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (rsim) framework for asynchronous systems. Information and Computation 205(12) (2007)Google Scholar
  7. 7.
    Backes, M., Hofheinz, D., Unruh, D.: Cosp: A general framework for computational soundness proofs. In: ACM CCS 2009, pp. 66–78 (November 2009); Preprint on IACR ePrint 2009/080Google Scholar
  8. 8.
    Bana, G., Hasebe, K., Okada, M.: Secrecy-oriented first-order logical analysis of cryptographic protocols (2010), http://eprint.iacr.org/2010/080
  9. 9.
    Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered resolution. Journal of the Association of Computing Machinery 48(1), 70–109 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Blanchet, B.: An automatic security protocol verifier based on resolution theorem proving (invited tutorial). In: 20th International Conference on Automated Deduction (CADE-20), Tallinn, Estonia (July 2005)Google Scholar
  11. 11.
    Blanchet, B.: A computationally sound mechanized prover for security protocols. IEEE Transactions on Dependable and Secure Computing 5(4), 193–207 (2008); Special issue IEEE Symposium on Security and Privacy (2006)CrossRefGoogle Scholar
  12. 12.
    Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Comon-Lundh, H., Cortier, V.: Computational soundness of observational equivalence. In: Proc. ACM Conf. Computer and Communication Security, CCS (2008)Google Scholar
  14. 14.
    Comon-Lundh, H., Cortier, V.: How to prove security of communication protocols? a discussion on the soundness of formal models w.r.t. computational ones. In: Dürr, C., Schwentick, T. (eds.) Proceedings of the 28th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2011), Dortmund, Germany. Leibniz International Proceedings in Informatics, vol. 9, pp. 29–44. Leibniz-Zentrum für Informatik (March 2011)Google Scholar
  15. 15.
    Cortier, V., Warinschi, B.: Computationally Sound, Automated Proofs for Security Protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Datta, A., Derek, A., Mitchell, J.C., Turuani, M.: Probabilistic Polynomial-Time Semantics for a Protocol Security Logic. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 16–29. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., Drielsma, P.H., Heám, P.C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The AVISPA Tool for the Automated Validation of Internet Security Protocols and Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Ganzinger, H., Nieuwenhuis, R.: Constraints and Theorem Proving. In: Comon, H., Marché, C., Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002, pp. 159–201. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Lifschitz, V.: Closed-world databases and circumscription. Artif. Intell. 27(2), 229–235 (1985)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  21. 21.
    Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol analysis. In: Proc. 8th ACM Conference on Computer and Communications Security (2001)Google Scholar
  22. 22.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook of Automated Reasoning, pp. 371–443. Elsevier and MIT Press (2001)Google Scholar
  23. 23.
    Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, B.: The Modelling and Analysis of Security Protocols. Addison Wesley (2000)Google Scholar
  24. 24.
    Unruh, D.: Computational soundness of hash functions. Presented at the 6th Workshop on Formal and Computational Cryptography (FCC) (July 2010)Google Scholar
  25. 25.
    Unruh, D.: The impossibility of computationally sound xor (July 2010); Preprint on IACR ePrint 2010/389Google Scholar
  26. 26.
    Warinschi, B.: A computational analysis of the needham-schroeder protocol. In: 16th Computer Security Foundation Workshop (CSFW), pp. 248–262. IEEE (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gergei Bana
    • 1
  • Hubert Comon-Lundh
    • 2
  1. 1.NTT Communication Science LaboratoriesAtsugiJapan
  2. 2.CNRS, INRIA Project SecSi and LSV, ENS CachanFrance

Personalised recommendations