Extracting Focused Locations for Web Pages

  • Qingqing Zhang
  • Peiquan Jin
  • Sheng Lin
  • Lihua Yue
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7142)


Most Web pages contain location information, which can be used to improve the effectiveness of search engines. In this paper, we concentrate on the focused locations, which refer to the most appropriate locations associated with Web pages. Current algorithms suffer from the ambiguities among locations, as many different locations share the same name (known as GEO/GEO ambiguity), and some locations have the same name with non-geographical entities such as person names (known as GEO/NON-GEO ambiguity). In this paper, we first propose a new algorithm named GeoRank, which employs a similar idea with PageRank to resolve the GEO/GEO ambiguity. We also introduce some heuristic rules to eliminate the GEO/NON-GEO ambiguity. After that, an algorithm with dynamic parameters to determine the focused locations is presented. We conduct experiments on two real datasets to evaluate the performance of our approach. The experimental results show that our algorithm outperforms the state-of-the-art methods in both disambiguation and focused locations determination.


Web Search Geographical information GEO/GEO ambiguity GEO/NON-GEO ambiguity Focused locations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cognitive computation group, (accessed in April 2011)
  2. 2.
    Gate, (accessed in April 2011)
  3. 3.
    Andogah, G., Bouma, G., Nerbonne, J., Koster, E.: Place name Ambiguity Resolution. In: Proc. of LREC, Marrakech Morocco, pp. 4–10 (2008)Google Scholar
  4. 4.
    Geonames, (accessed in April 2011)
  5. 5.
    Washington, (accessed in April 2011)
  6. 6.
    United Nations department of economic and social affairs, (accessed in April 2011)
  7. 7.
    Usgs geographic names information system (gnis), (accessed in April 2011)
  8. 8.
    World Gazetteer, (accessed in April 2011)
  9. 9.
    Lingpipe, (accessed in April 2011)
  10. 10.
    Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging Web content. In: Proc. of SIGIR, Sheffield, United Kingdom, pp. 273–280 (2004)Google Scholar
  11. 11.
    Anastacio, I., Martins, B., Calado, P.: A comparison of different approaches for assigning geographic scopes to documents. In: Proc. of the INForum 2009 (2009)Google Scholar
  12. 12.
    Chen, M., Lin, X., Zhang, Y., Wang, X., Yu, H.: Assigning geographical focus to documents. In: Proc. of Geoinformatics, Beijing, China, pp. 1–6 (2010)Google Scholar
  13. 13.
    Ding, J., Gravano, L., Shivakumar, N.: Computing geographical scopes of Web resources. In: Proc. of VLDB, Cairo, Egypt, pp. 545–556 (2000)Google Scholar
  14. 14.
    Gyle, A., Plaunt, C.: Gipsy: Automated geographic indexing of text documents. Journal of the American Society of Information Science 45(9), 645–655 (1994)CrossRefGoogle Scholar
  15. 15.
    Leidner, J.L.: Toponym resolution in text: Annotation, evaluation and applications of spatial grounding of place names. PhD dissertation, University of Edinburgh (2007)Google Scholar
  16. 16.
    Leidner, J.L.: An evaluation dataset for the toponym resolution task. Computers Environment and Urban Systems 30(4), 400–417 (2006)CrossRefGoogle Scholar
  17. 17.
    Markowetz, A., Chen, Y., Suel, T.: Design and implementation of a geographic search engine. In: Proc. of WebDB, Baltimore, Maryland, pp. 19–24 (2005)Google Scholar
  18. 18.
    Silva, M.J., Martins, B.: Adding Geographic Scopes to Web Resources. Computers Environment and Urban Systems 30(4), 378–399 (2006)CrossRefGoogle Scholar
  19. 19.
    Martins, B., Silva, M.J.: A Graph-Ranking Algorithm for Geo-Referencing Documents. In: Proc. If ICDM, Houston, Texas, pp. 741–744 (2005)Google Scholar
  20. 20.
    Wang, C., Xie, X., Wang, L., Lu, Y., Ma, W.: Detecting Geographic Locations from Web Resources. In: Proc. of GIR, Bremen, Germany, pp. 17–249Google Scholar
  21. 21.
    Sanderson, M., Kohler, J.: Analyzing geographic queries. In: Proc. of GIR, Sheffield, UK (2004)Google Scholar
  22. 22.
    Sanderson, M.: Retrieving with good sense. Information Retrieval 2(1), 45–65 (2000)CrossRefGoogle Scholar
  23. 23.
    Sobhana, N., Barua, A., Das, M., Mitra, P., Ghosh, S.: Co-occurrence Based Place Name Disambiguation and its Application to Retrieval of Geological Text. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) NeCoM 2010, Part III. CCIS, vol. 90, pp. 543–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Volz, R., Kleb, J., Mueller, W.: Towards ontology-based disambiguation of geographical identifiers. In: Proc. of WWW Workshop on Identity, Identifiers, Identifications (I3), Bandd, Alberta, Canada (2007)Google Scholar
  25. 25.
    Zubizarreta, A., de la Fuente, P., Cantera, J.M., Arias, M.: Extracting geographic context from the Web: georeferencing in mymose. In: Proc. of GIR, pp. 554–561 (2009)Google Scholar
  26. 26.
    Wang, X., Zhang, Y., Chen, M., Lin, X.: An Evidence-based Approach for Toponym Disambiguation. In: Proc. of Geoinformatics 2010, pp. 1–7 (2010)Google Scholar
  27. 27.
    Wang, L., Wang, C., Xie, X., Forman, J., Lu, Y., Ma, W., Li, Y.: Detecting Dominant Locations from Search Queries. In: Proc. of SIGIR, Salvador, Brazil, pp. 424–431 (2005)Google Scholar
  28. 28.
    Rauch, E., Bukatin, M., Baker, K.: A confidence-based framework for disambiguating geographic terms. In: Proc. of HLT-NAACL-GEOREF, pp. 50–54 (2003)Google Scholar
  29. 29.
    Bryan, K., Leise, T.: The $25,000,000,000 Eigenvector: The Linear Algebra Behind Google. Journal SIAM Review 40(3), 569–581 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qingqing Zhang
    • 1
  • Peiquan Jin
    • 1
  • Sheng Lin
    • 1
  • Lihua Yue
    • 1
  1. 1.University of Science and Technology of ChinaChina

Personalised recommendations