Exploring Extensive Linguistic Feature Sets in Near-Synonym Lexical Choice

  • Mari-Sanna Paukkeri
  • Jaakko Väyrynen
  • Antti Arppe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7182)


In the near-synonym lexical choice task, the best alternative out of a set of near-synonyms is selected to fill a lexical gap in a text. We experiment on an approach of an extensive set, over 650, linguistic features to represent the context of a word, and a range of machine learning approaches in the lexical choice task. We extend previous work by experimenting with unsupervised and semi-supervised methods, and use automatic feature selection to cope with the problems arising from the rich feature set. It is natural to think that linguistic analysis of the word context would yield almost perfect performance in the task but we show that too many features, even linguistic, introduce noise and make the task difficult for unsupervised and semi-supervised methods. We also show that purely syntactic features play the biggest role in the performance, but also certain semantic and morphological features are needed.


Near-synonym lexical choice linguistic features 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apidianaki, M.: Data-driven semantic analysis for multilingual WSD and lexical selection in translation. In: Proceedings of EACL 2009, pp. 77–85. ACL (2009)Google Scholar
  2. 2.
    Arppe, A.: Univariate, bivariate, and multivariate methods in corpus-based lexicography–a study of synonymy. Ph.D. thesis, University of Helsinki, Finland (2008)Google Scholar
  3. 3.
    Baayen, R.H., Arppe, A.: Statistical classification and principles of human learning. In: Proceedings of QITL, vol. 4 (2011)Google Scholar
  4. 4.
    Carpuat, M., Wu, D.: Improving statistical machine translation using word sense disambiguation. In: Proceedings of EMNLP-CoNLL 2007, pp. 61–72 (2007)Google Scholar
  5. 5.
    Comon, P.: Independent component analysis, a new concept? Signal processing 36(3), 287–314 (1994)zbMATHCrossRefGoogle Scholar
  6. 6.
    Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)zbMATHCrossRefGoogle Scholar
  7. 7.
    Edmonds, P.: Choosing the word most typical in context using a lexical co-occurrence network. In: Proceedings of EACL 1997, pp. 507–509. ACL (1997)Google Scholar
  8. 8.
    Edmonds, P., Hirst, G.: Near-synonymy and lexical choice. Computational Linguistics 28(2), 105–144 (2002)CrossRefGoogle Scholar
  9. 9.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)zbMATHGoogle Scholar
  10. 10.
    Haykin, S.: Neural networks: a comprehensive foundation. Prentice-Hall, Englewood Cliffs (1994)zbMATHGoogle Scholar
  11. 11.
    Inkpen, D., Graeme, H.: Building and using a lexical knowledge base of near-synonym differences. Computational Linguistics 32(2), 223–262 (2006)CrossRefGoogle Scholar
  12. 12.
    Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kurimo, M., Creutz, M., Turunen, V.: Overview of morpho challenge in CLEF 2007. In: Working Notes of the CLEF 2007 Workshop, pp. 19–21 (2007)Google Scholar
  14. 14.
    Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review 104(2), 211–240 (1997)CrossRefGoogle Scholar
  15. 15.
    McCarthy, D.: Lexical substitution as a task for WSD evaluation. In: Proceedings of SIGLEX/SENSEVAL 2002, pp. 109–115. ACL (2002)Google Scholar
  16. 16.
    McCarthy, D., Navigli, R.: SemEval-2007 task 10: English lexical substitution task. In: Proceedings of SemEval 2007, pp. 48–53. ACL (2007)Google Scholar
  17. 17.
    McCullagh, P., Nelder, J.A.: Generalized Linear Models. Chapman & Hall, New York (1990)Google Scholar
  18. 18.
    Mihalcea, R., Sinha, R., McCarthy, D.: SemEval-2010 Task 2: Cross-lingual lexical substitution. In: Proceedings of SemEval 2010, pp. 9–14. ACL (2010)Google Scholar
  19. 19.
    Sahlgren, M.: The Word-Space Model. Ph.D. thesis, Department of Linguistics, Stockholm University, Stockholm, Sweden (2006)Google Scholar
  20. 20.
    Schütze, H.: Dimensions of meaning. In: Proceedings of SC 1992, pp. 787–796. IEEE (1992)Google Scholar
  21. 21.
    Tapanainen, P., Järvinen, T.: A non-projective dependency parser. In: Proceedings of Applied Natural Language Processing, pp. 64–71. ACL (1997)Google Scholar
  22. 22.
    Voorhees, E.M.: Query expansion using lexical-semantic relations. In: Proceedings of ACM SIGIR 1994, pp. 61–69. Springer, Heidelberg (1994)Google Scholar
  23. 23.
    Wang, T., Hirst, G.: Near-synonym lexical choice in latent semantic space. In: Proceedings of Coling 2010, pp. 1182–1190. ACL (2010)Google Scholar
  24. 24.
    Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of ACL 1995, pp. 189–196. ACL (1995)Google Scholar
  25. 25.
    Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mari-Sanna Paukkeri
    • 1
  • Jaakko Väyrynen
    • 1
  • Antti Arppe
    • 2
  1. 1.Aalto University School of ScienceAaltoFinland
  2. 2.University of HelsinkiFinland

Personalised recommendations