Dune-UDG: A Cut-Cell Framework for Unfitted Discontinuous Galerkin Methods

Abstract

Simulations on complex shaped domains are of big interest as the mesh generation for such domains is still an involved process. Recently, cut-cell based methods are becoming very popular. These methods avoid the problems of mesh-generation by using unfitted discretizations on cut-cell meshes. We present the Dune-UDG module which allows an easy implementation of Unfitted Discontinuous Galerkin methods on cut-cell grids. Different geometry representations are available. Using the presented interfaces it is possible to implement completely new cut-cell representations with a minimum of work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, J.W., Elliott, C.M.: Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA Journal of Numerical Analysis 7(3), 283–300 (1987)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE. Computing 82(2-3), 121–138 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bastian, P., Engwer, C.: An unfitted finite element method using discontinuous Galerkin. International Journal for Numerical Methods in Engineering 79(12) (2009)Google Scholar
  4. 4.
    Bear, J.: Dynamics of fluids in porous media. Dover Publications (1988)Google Scholar
  5. 5.
    Belytschko, T., Moes, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4) (2001)Google Scholar
  6. 6.
    Cockburn, B., Shu, C.W.: The runge-kutta discontinuous Galerkin method for conservation laws v: Multidimensional systems. Journal of Computational Physics 141(2), 199–224 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Coirier, W.J., Powell, K.G.: An accuracy assessment of cartesian-mesh approaches for the euler equations. Journal of Computational Physics 117(1), 121–131 (1995)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dolbow, J.E.: An extended finite element method with discontinuous enrichment for applied mechanics. PhD thesis, Northwestern University (1999)Google Scholar
  9. 9.
    Engwer, C.: An Unfitted Discontinuous Galerkin Scheme for Micro-scale Simulations and Numerical Upscaling. PhD thesis, Universität Heidelberg (2009)Google Scholar
  10. 10.
    Engwer, C., Bastian, P., Kuttanikkad, S.P.: An unfitted discontinuous galerkin finite element method for pore scale simulations. In: 9th International Workshop on State-of-the-Art in Scientific and Parallel Computing. LNCS, Springer, Heidelberg (2008); (in press)Google Scholar
  11. 11.
    Bastian, P., Engwer, C., Fahlke, J., Ippisch, O.: An Unfitted Discontinuous Galerkin method for pore-scale simulations of solute transport. Mathematics and Computers in Simulation 81(10), 2051–2061 (2011), http://www.sciencedirect.com/science/article/pii/S0378475410004258 MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Fidkowski, K.J.: A simplex cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations. PhD thesis, Massachusetts Institute of Technology (2007)Google Scholar
  13. 13.
    Heimann, F., Engwer, C., Ippisch, O., Bastian, P.: An unfitted interior penalty discontinuous Galerkin method for incompressible Navier-Stokes two-phase flow. International Journal for Numerical Methods in Fluids (2012), http://dx.doi.org/10.1002/fld.3653
  14. 14.
    Heywood, J., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids 22, 325–352 (1996)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. International Journal for Numerical Methods in Fluids 60(11), 1259–1288 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Johansen, H., Colella, P.: A cartesian mesh embedded boundary method for poisson’s equation on irregular domains. Journal of Computational Physics 147, 60–85 (1998)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Liehr, F., Preusser, T., Rumpf, M., Sauter, S., Schwen, L.O.: Composite finite elements for 3D image based computing. Computing and Visualization in Science 12(4), 171–188 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rivière, B., Girault, V.: Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces. Computer Methods in Applied Mechanics and Engineering 195, 3274–3292 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.IWR, Univerität HeidelbergHeidelbergGermany

Personalised recommendations