Dune-Multidomaingrid: A Metagrid Approach to Subdomain Modeling

Abstract

We present a Dune-Grid extension that enhances existing Dune grids with the ability to designate arbitrary subsets of their leaf entity complex as subdomains and present them as new grid objects. We describe the functionality of this module, which is called Dune-Multidomaingrid and available as free software, and outline its implementation. In particular, we highlight the performance characteristics of our module and present a way of tailoring them to a specific problem by means of a modular backend engine. Finally, we give some pointers to current applications of the module.

Keywords

Meta Grid Discontinuous Galerkin Scheme Level View Grid Interface Grid Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Boost C++ libraries, http://www.boost.org
  2. 2.
    Dune download and license page, http://www.dune-project.org/download.html
  3. 3.
    Bangerth, W., Hartmann, R., Kanschat, G.: deal.II Differential Equations Analysis Library, Technical Reference, http://www.dealii.org
  4. 4.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part I: Abstract Framework. Computing 82(2-3), 103–119 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part II: Implementation and Tests in DUNE. Computing 82(2-3), 121–138 (2008)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bastian, P., Buse, G., Sander, O.: Infrastructure for the coupling of dune grids. In: Proceedings of ENUMATH 2009, pp. 107–114 (2010)Google Scholar
  7. 7.
    Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE). Kybernetika 46(2), 294–315 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximations for stokes-darcy flow with beavers-joseph interface conditions. SIAM Journal on Numerical Analysis 47(6), 4239–4256 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications 20(3), 720–755 (1999)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Edwards, H.: Managing complexity in massively parallel, adaptive, multiphysics applications. Engineering with Computers 22, 135–155 (2006)CrossRefGoogle Scholar
  11. 11.
    Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMux: DUNE for Multi-Phase, Component, Scale, Physics, . . . Flow and Transport in Porous Media. Advances in Water Resources 34(9), 1102–1112 (2011)Google Scholar
  12. 12.
    Gersbacher, C.: The DUNE PrismGrid Module. In: Dedner, A., Flemisch, B., Klöfkorn, R. (eds.) Advances in DUNE, vol. 107, pp. 33–44. Springer, Heidelberg (2012)Google Scholar
  13. 13.
    Gräser, C., Sander, O.: The dune-subgrid module and some applications. Computing 8(4), 269–290 (2009)CrossRefGoogle Scholar
  14. 14.
    Logg, A.: Automating the finite element method. Arch. Comput. Methods Eng. 14(2), 93–138 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    MpCCI website, http://www.mpcci.de
  16. 16.
    Müthing, S.: dune-multidomain, http://gitorious.org/dune-multidomain
  17. 17.
    Müthing, S.: dune-multidomaingrid, http://gitorious.org/dune-multidomaingrid

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Parallele und Verteilte SystemeUniversität StuttgartStuttgartGermany
  2. 2.Interdisziplinäres Zentrum für Wissenschaftliches RechnenUniversität HeidelbergHeidelbergGermany

Personalised recommendations