Validating Empirically a Rating Approach for Quantifying the Quality of Collaboration

  • Georgios Kahrimanis
  • Irene-Angelica Chounta
  • Nikolaos Avouris
Part of the Studies in Computational Intelligence book series (SCI, volume 408)

Abstract

Interdisciplinarity in the Computer Supported Collaborative Learning (CSCL) research field involves the application of several methodological approaches towards analysis that range from deep-level qualitative analyses of small interaction-rich episodes of collaboration, to quantitative measures of suitably categorized events of interaction used as indicators of the success of collaboration in some of its facets. This article adopts an alternative approach to CSCL analysis that aims at taking advantage of some desired properties of each of these diverse methodological trends, involving the use of a rating scheme for the assessment of collaboration quality. After defining a set of dimensions that cover the most important aspects of collaboration, it employs appropriately trained human raters basing their assessments on substantial aspects of collaboration that are not easily formalisable. The activities studied here regard 228 collaborating dyads, working synchronously on a problem-solving task. Based on this large dataset, relations between dimensions of collaboration quality are unraveled on empirical grounds, by elaborating ratings statistically using a multidimensional scaling technique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avouris, N., Margaritis, M., Komis, V.: Modelling interaction during small-group synchronous problem-solving activities: The Synergo approach. In: 2nd Int. Workshop on Designing Computational Models of Collaborative Learning Interaction, ITS 2004, Maceio, Brasil (September 2004)Google Scholar
  2. 2.
    Bohl, M.: Flowcharting Techniques. Science Research Associates, Chicago (1971)Google Scholar
  3. 3.
    Borg, I., Lingoes, J.: Multidimensional Similarity Structure Analysis. Springer, Beverley Hills (1987)CrossRefGoogle Scholar
  4. 4.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling. Springer, Berlin (1997)MATHGoogle Scholar
  5. 5.
    Cicchetti, D.V., Sparrow, S.S.: Developing criteria for establishing the interrater reliability of specific items in a given inventory. American Journal of Mental Deficiency 86, 127–137 (1981)Google Scholar
  6. 6.
    Clark, H., Brennan, S.: Grounding in communication. In: Resnick, L.B., Levine, J., Teasley, S. (eds.) Perspectives on Socially Shared Cognition, pp. 127–149. APA Press, Washington, DC (1991)CrossRefGoogle Scholar
  7. 7.
    Clark, H.: Using language. Cambrigde University Press, Cambridge (1996)Google Scholar
  8. 8.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall, London (2001)MATHGoogle Scholar
  9. 9.
    Davison, M.L.: Multidimensional Scaling. John Wiley and Sons, New York (1983)MATHGoogle Scholar
  10. 10.
    De Leeuw, J.: Applications of convex analysis to multidimensional scaling. In: Barra, J., Brodeau, F., Romier, G., van Cutsem, B. (eds.) Recent Developments in Statistics, pp. 133–145. North Holland Publishing Company, Amsterdam (1977)Google Scholar
  11. 11.
    De Leeuw, J., Heiser, W.J.: Theory of multidimensional scaling. In: Krishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics, vol. 2, pp. 285–316. North-Holland, Amsterdam (1982)Google Scholar
  12. 12.
    Dillenbourg, P., Baker, M., Blaye, A., O’Malley, C.: The evolution of research on collaborative learning. In: Reimann, P., Spada, H. (eds.) Learning in Humans and Machines, pp. 189–211. Springer, Berlin (1995)Google Scholar
  13. 13.
    Fischer, F., Mandl, H.: Being there or being where? Videoconferencing and cooperative learning. In: van Oostendorp, H. (ed.) Cognition in a Digital World, pp. 205–223. Lawrence Erlbaum Associates, Mahwah (2003)Google Scholar
  14. 14.
    Fleiss, J.L.: Statistical Methods for Rates and Proportions, 2nd edn. Wiley, New York (1981)MATHGoogle Scholar
  15. 15.
    George, D., Mallery, P.: SPSS for Windows Step by Step: A Simple Guide and Reference. 11.0 Update. Allyn & Bacon, Boston (2003)Google Scholar
  16. 16.
    Guttman, L.A.: A general non-metric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33, 495–506 (1968)CrossRefGoogle Scholar
  17. 17.
    Kahrimanis, G., Meier, A., Chounta, I.-A., Voyiatzaki, E., Spada, H., Rummel, N., Avouris, N.: Assessing Collaboration Quality in Synchronous CSCL Problem-Solving Activities: Adaptation and Empirical Evaluation of a Rating Scheme. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 267–272. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Kahrimanis G., Avouris, A., Komis, V.: Interaction analysis as a tool for supporting collaboration. An overview. In: Daradoumis, T., Caballe, S., Juan, A.A., Xhafa, F. (eds.) Technology-Enhanced Systems and Tools for Collaborative Learning Scaffolding (in press) Google Scholar
  19. 19.
    Kerlinger, F.N., Lee, H.B.: Foundations of behavioral research. Harcourt College Publishers, New York (2000)Google Scholar
  20. 20.
    Kruskal, J.B.: Multidimensional scaling by optimizing goodness-of-fit to a non-metric hypothesis. Psychometrica 29, 1–27 (1964)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage Publications, London (1978)Google Scholar
  22. 22.
    Laughlin, P.R.: Social combination processes of cooperative, problem-solving groups on verbal intellective tasks. In: Fishbein, M. (ed.) Progress in Social Psychology, vol. 1, pp. 127–155. Lawrence Erlbaum, Hillsdale (1980)Google Scholar
  23. 23.
    Meier, A., Spada, H., Rummel, N.: A rating scheme for assessing the quality of computer-supported collaboration processes. International Journal of Computer-Supported Collaborative Learning 2, 63–86 (2007)CrossRefGoogle Scholar
  24. 24.
    Meier, A., Voyiatzaki, E., Kahrimanis, G., Rummel, N., Spada, H., Avouris, N.: Teaching students how to improve their collaboration: Assessing collaboration quality and providing adaptive feedback in a CSCL setting. In: Rummel, N., Weinberger, A. (eds.) New Challenges in CSCL: Towards Adaptive Script Support, Worshop in Proceedings of the Eighth International Conference of the Learning Sciences (ICLS 2008), Utrecht, vol. 3, pp. 338–345. International Society of the Learning Sciences (June 2008)Google Scholar
  25. 25.
    Roschelle, J.: Learning by collaboration: Convergent conceptual change. Journal of the Learning Sciences 2, 235–276 (1992)CrossRefGoogle Scholar
  26. 26.
    Scardamalia, M., Bereiter, C.: Computer support for knowledge-building communities. In: Koschmann, T. (ed.) CSCL: Theory and Practice of an Emerging Paradigm, pp. 249–268. Lawrence Erlbaum Associates, Hillsdale (1996)Google Scholar
  27. 27.
    Samurcay, R.: The concept of variable in programming: Its meaning and use in problem solving by novice programmers. In: Soloway, E., Spohrer, J.C. (eds.) Studying the Novice Programmer, pp. 161–178. Lawrence Erlbaum, Hillsdale (1989)Google Scholar
  28. 28.
    Schiffman, S.S., Reynolds, M.L., Young, F.W.: Introduction to Multidimensional Scaling - Theory, Methods, and Applications. Academic Press, New York (1981)MATHGoogle Scholar
  29. 29.
    Shepard, R.N.: Analysis of proximities: Multidimensional scaling with an unknown distance function I & II. Psychometrika 27, 125–140 & 219–246 (1962)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Soloway, E., Bonar, J., Ehrlich, K.: Cognitive strategies and looping constructs. In: Soloway, E., Spohrer, J.C. (eds.) Studying the Novice Programmer, pp. 191–207. Lawrence Erlbaum, Hillsdale (1989)Google Scholar
  31. 31.
    Stahl, G.: Sustaining group cognition in a math chat environment. Research and Practice in Technology Enhanced Learning (RPTEL) 1(2), 85–113 (2006)CrossRefGoogle Scholar
  32. 32.
    Stahl, G., Koschmann, T., Suthers, D.: Computer-supported collaborative learning: An historical perspective. In: Sawyer, R.K. (ed.) Cambridge Handbook of the Learning Sciences, pp. 409–426. Cambridge University Press, Cambridge (2006)Google Scholar
  33. 33.
    Steyvers, M.: Multidimensional Scaling. In: Encyclopedia of Cognitive Science. Macmillan, London (2002)Google Scholar
  34. 34.
    Strijbos, J.W., Martens, R.L., Prins, F.J., Jochems, W.M.G.: Content analysis: What are they talking about? Computers and Education 46(1), 29–48 (2006)CrossRefGoogle Scholar
  35. 35.
    Tindale, R.S., Kameda, T., Hinsz, V.B.: Group decision making. In: Hogg, M.A., Cooper, J. (eds.) Sage Handbook of Social Psychology, pp. 381–403. Sage, London (2003)Google Scholar
  36. 36.
    Wegner, D.M.: Transactive memory: A contemporary analysis of the group mind. In: Mullen, B., Goethals, G.R. (eds.) Theories of Group Behaviour, pp. 185–208. Springer, New York (1987)CrossRefGoogle Scholar
  37. 37.
    Wirtz, M., Caspar, F.: Beurteilerübereinstimmung und Beurteilerreliabilität. Verlag für Psychologie, Göttingen (2002)Google Scholar
  38. 38.
    XLSTAT, Addinsoft (2009), http://www.xlstat.com
  39. 39.
    Young, F.W., Hamer, R.M.: Theory and applications of multidimensional scaling. Erlbaum, Hillsdale (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Georgios Kahrimanis
    • 1
  • Irene-Angelica Chounta
    • 1
  • Nikolaos Avouris
    • 1
  1. 1.Human-Computer Interaction GroupUniversity of PatrasRio-PatrasGreece

Personalised recommendations