Self-Organizing Spatio-temporal Pattern Formation in Two-Dimensional Daisyworld

  • Dharani Punithan
  • R. I. (Bob) McKay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7166)


Watson and Lovelock’s daisyworld model [1] was devised to demonstrate how the biota of a world could stabilise it, driving it to a temperature regime that favoured survival of the biota. The subsequent studies have focused on the behaviour of daisyworld in various fields. This study looks at the emergent patterns that arise in 2D daisyworlds at different parameter settings, demonstrating that a wide range of patterns can be observed. Selecting from an immense range of tested parameter settings, we present the emergence of complex patterns, Turing-like structures, cyclic patterns, random patterns and uniform dispersed patterns, corresponding to different kinds of possible worlds. The emergence of such complex behaviours from a simple, abstract model serve to illuminate the complex mosaic of patterns that we observe in real-world biosystems.


Pattern Formation Random Pattern Global Dynamic Species Dispersion Periodic Spiral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Watson, A.J., Lovelock, J.E.: Biological homeostasis of the global environment: The parable of daisyworld. Tellus B 35(4), 284–289 (1983)CrossRefGoogle Scholar
  2. 2.
    Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraula, G., Bonabeau, E.: Self-organization in biological systems, 2nd edn. Princeton University Press (2003)Google Scholar
  3. 3.
    Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237(641), 37–72 (1952)CrossRefGoogle Scholar
  4. 4.
    Belousov, B.P.: A periodic reaction and its mechanism. Sbornik Referatov po Radiatsonno Meditsine (Medgiz, Moscow), 145–147 (1958) (in Russian)Google Scholar
  5. 5.
    Bénard, H.: Les tourbillons cellulaires dans une nappe liquide. Revue générale des Sciences pures et appliquées 11, 1261–1271 and 1309–1328 (1900)Google Scholar
  6. 6.
    Murray, J.D.: Mathematical Biology II: Spatial models and biomedical applications, 3rd edn., vol. 2. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    von Bloh, W., Block, A., Schellnhuber, H.J.: Self-stabilization of the biosphere under global change: A tutorial geophysiological approach. Tellus B 49(3), 249–262 (1997)CrossRefGoogle Scholar
  8. 8.
    Ackland, G.J., Clark, M.A., Lenton, T.M.: Catastrophic desert formation in daisyworld. Journal of Theoretical Biology 223(1), 39–44 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Adams, B., Carr, J., Lenton, T.M., White, A.: One-dimensional daisyworld: Spatial interactions and pattern formation. Journal of Theoretical Biology 223(4), 505–513 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ackland, G.J., Wood, A.J.: Emergent patterns in space and time from daisyworld: a simple evolving coupled biosphere-climate model. Philosophical Transactions of the Royal Society A 13: Mathematical, Physical and Engineering Sciences 368(1910), 161–179 (2010)CrossRefGoogle Scholar
  11. 11.
    Moran, P.A.P.: Notes on continuous stochastic phenomena. Biometrika 37(1/2), 17–23 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kump, L.R., Kasting, J.F., Crane, R.G.: The Earth System, 3rd edn. Prentice Hall (2010)Google Scholar
  13. 13.
    Nakao, H., Mikhailov, A.S.: Turing patterns in network-organized activator-inhibitor systems. Nature Physics 6(7), 544–550 (2010)CrossRefGoogle Scholar
  14. 14.
    May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–467 (1976)CrossRefGoogle Scholar
  15. 15.
    McGuffie, K., Henderson-Sellers, A.: A Climate Modelling Primer, 3rd edn. Wiley, Chichester (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Dharani Punithan
    • 1
  • R. I. (Bob) McKay
    • 1
  1. 1.Structural Complexity LaboratorySeoul National UniversitySouth Korea

Personalised recommendations