Advertisement

On Measurement of Internal Variables of Complex Self-Organized Systems and Their Relation to Multifractal Spectra

  • Dalibor Štys
  • Petr Jizba
  • Štěpán Papáček
  • Tomáš Náhlík
  • Petr Císař
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7166)

Abstract

We propose a method for characterizing structured, experimentally observable, complex self-organized systems. The method in question is based on the observation that number of self-organized systems can be mathematically perceived as consisting of several interconnected multifractal components. We illustrate our key results with ensuing applications. The relation of the results obtained to known examples of strange attractors is also discussed.

Keywords

Rényi entropy principal component analysis generalized dimensions multifractal spectra 

References

  1. 1.
  2. 2.
    Martens, H.: The Informative Converse paradox: Windows into the unknown. Chemometrics and Intelligent Laboratory Systems, 124–138 (2011)Google Scholar
  3. 3.
    Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice Hall, London (2007)zbMATHGoogle Scholar
  4. 4.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2, 559–572 (1901)Google Scholar
  5. 5.
    Viswanath, D.: The fractal property of the Lorenz attractor. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Lorenz, E.N.: Deterministic nonperiodic flow. Physica D 190, 115–128 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zampa, P., Arnost, R.: 4th WSEAS Conference (2004)Google Scholar
  9. 9.
    Grassberger, P., Procaccia, P.: Characterization of Strange Attractors. Phys. Rev. Lett. 50, 346–349 (1983)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grassberger, P., Procaccia, P.: Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Stys, D., Vanek, J., Nahlik, T., Urban, J., Cisar, P.: The cell monolayer trajectory from the system state point of view. Mol. BioSyst. 7, 2824–2833 (2011)CrossRefGoogle Scholar
  13. 13.
    Stys, D., Urban, J., Vanek, J., Cisar, P.: Analysis of biological time-lapse microscopic experiment from the point of view of the information theory. Micron. 41, 478–483 (2010)CrossRefGoogle Scholar
  14. 14.
    Urban, J., Vanek, J., Stys, D.: Preprocessing of microscopy images via Shannon’s entropy. Pattern Recognition and Information Processing, 283–187 (2009)Google Scholar
  15. 15.
    Jalnine et al, arXiv:0805.0118v1Google Scholar
  16. 16.
    Zahri, M.: Numerical Solutions of a Stochastic Lorenz Attractor. J. Num. Mat. Stoch. 2, 1–11 (2010)MathSciNetGoogle Scholar
  17. 17.
    Wilensky, M.: NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999), http://ccl.northwestern.edu/netlogo/

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Dalibor Štys
    • 1
  • Petr Jizba
    • 2
  • Štěpán Papáček
    • 1
  • Tomáš Náhlík
    • 1
  • Petr Císař
    • 1
  1. 1.School of Complex Sytems, Faculty of Fishery and Water ProtectionUniversity of South BohemiaNové HradyCzech Republic
  2. 2.FNSPECzech Technical University in PraguePragueCzech Republic

Personalised recommendations