Ant-Based Systems for Wireless Networks: Retrospect and Prospects

  • Laurent Paquereau
  • Bjarne E. Helvik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7166)


Since they were first introduced as powerful stochastic optimization systems, ant-based systems have been applied to a wide range of problems. One of the most successful applications has been routing in dynamic wired telecommunication networks. Following this success, similar approaches have been applied to routing in multi-hop wireless networks. The objective has been to achieve self-organizing path management in these networks. This paper looks back on 10 years of research and presents reflections on the challenges, the evolution, the contributions and the future perspectives in this field.


  1. 1.
    Akyildiz, I., Wang, X., Wang, W.: Wireless mesh networks: a survey. Computer Networks 47(4), 445–487 (2005)zbMATHCrossRefGoogle Scholar
  2. 2.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)CrossRefGoogle Scholar
  3. 3.
    Baras, J.S., Mehta, H.: A probabilistic emergent routing algorithm for mobile ad hoc networks. In: 1st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt (2003)Google Scholar
  4. 4.
    Bokhari, F., Zaruba, G.: AMIRA: interference-aware routing using ant colony optimization in wireless mesh networks. In: IEEE Wireless Communications and Networking Conference, WCNC (2009)Google Scholar
  5. 5.
    Bruno, R., Nurchis, M.: Survey on diversity-based routing in wireless mesh networks: Challenges and solutions. Computer Communications 33(3), 269–282 (2010)CrossRefGoogle Scholar
  6. 6.
    Correia, F., Vazão, T.: Simple ant routing algorithm strategies for a (multipurpose) MANET model. Ad Hoc Networks 8(8), 810–823 (2010)CrossRefGoogle Scholar
  7. 7.
    Costa, D., Hertz, A.: Ants can colour graphs. Journal of the Operational Research Society 48(3), 295–305 (1997)zbMATHGoogle Scholar
  8. 8.
    De Couto, D., Aguayo, D., Chambers, B., Morris, R.: Performance of multihop wireless networks: Shortest path is not enough. In: 1st Workshop on Hot Topics in Networks (HotNets), ACM SIGCOMM (2002)Google Scholar
  9. 9.
    Dhillon, S.S., Arbona, X., Van Mieghem, P.: Ant routing in mobile ad hoc networks. In: 3rd IEEE International Conference on Networking and Services, ICNS (2007)Google Scholar
  10. 10.
    Di Caro, G.A., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communications Networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)zbMATHGoogle Scholar
  11. 11.
    Dorigo, M., Di Caro, G.A., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life 5(2), 137–172 (1999)CrossRefGoogle Scholar
  12. 12.
    Ducatelle, F., Di Caro, G.A., Gambardella, L.M.: An Analysis of the Different Components of the AntHocNet Routing Algorithm. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 37–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Ducatelle, F.: Adaptive Routing in Ad Hoc Wireless Multi-hop Networks. Ph.D. thesis, University of Lugano, Switzerland (2007)Google Scholar
  14. 14.
    Ducatelle, F., Di Caro, G.A., Gambardella, L.M.: A new approach for integrating proactive and reactive routing in MANETs. In: 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems, MASS (2008)Google Scholar
  15. 15.
    Ducatelle, F., Di Caro, G.A., Gambardella, L.M.: Principles and applications of swarm intelligence for adaptive routing in telecommunications networks. Swarm Intelligence 4(3), 173–198 (2010)CrossRefGoogle Scholar
  16. 16.
    Günes, M., Sorges, U., Bouazizi, I.: ARA-the ant-colony based routing algorithm for MANETs. In: International Workshop on Ad Hoc Networking, IWAHN (2002)Google Scholar
  17. 17.
    Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., Viennot, L.: Optimized link state routing protocol for ad hoc networks. In: IEEE International Multi Topic Conference, INMIC (2001)Google Scholar
  18. 18.
    Farooq, M., Di Caro, G.: Routing protocols for next-generation networks inspired by collective behaviors of insect societies: An overview. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence: Introduction and Applications. Natural Computing Series, pp. 101–160. Springer, Heidelberg (2008)Google Scholar
  19. 19.
    Paquereau, L., Helvik, B.E.: Opportunistic Ant-Based Path Management for Wireless Mesh Networks. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 480–487. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Paquereau, L., Helvik, B.E.: Ant-Based Multipath Routing for Wireless Mesh Networks. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 31–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. In: 2nd IEEE Workshop on Mobile Computing and Applications (1999)Google Scholar
  22. 22.
    Saleem, M., Di Caro, G.A., Farooq, M.: A review of swarm intelligence based routing protocols for wireless sensor networks. Information Sciences 181(20), 4597–4624 (2011)CrossRefGoogle Scholar
  23. 23.
    Shen, C.C., Jaikaeo, C.: Ad hoc multicast routing algorithm with swarm intelligence. Mobile Networks and Applications 10(1), 47–59 (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Laurent Paquereau
    • 1
  • Bjarne E. Helvik
    • 2
  1. 1.Department of TelematicsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Centre for Quantifiable Quality of Service in Communication SystemsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations