Closed-Loop Actuated Surgical System Utilizing Real-Time In-Situ MRI Guidance

  • Gregory A. Cole
  • Kevin Harrington
  • Hao Su
  • Alex Camilo
  • Julie G. Pilitsis
  • Gregory S. Fischer
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 79)

Abstract

Direct magnetic resonance imaging (MRI) guidance during surgical intervention would provide many benefits; most significantly, interventional MRI can be used for planning, monitoring of tissue deformation, realtime visualization of manipulation, and confirmation of procedure success. Direct MR guidance has not yet taken hold because it is often confounded by a number of issues including: MRI-compatibility of existing surgery equipment and patient access in the scanner bore. This paper presents a modular surgical system designed to facilitate the development of MRI-compatible intervention devices. Deep brain stimulation and prostate brachytherapy robots are the two examples that successfully deploying this surgical modules. Phantom and human imaging experiments validate the capability of delineating anatomical structures in 3T MRI during robot motion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carpi, F., Khanicheh, A., Mavroidis, C., De Rossi, D.: MRI compatibility of silicone-made contractile dielectric elastomer actuators. IEEE/ASME Transactions on Mechatronics 13(3), 370–374 (2008)CrossRefGoogle Scholar
  2. 2.
    Chinzei, K., Hata, N., Jolesz, F.A., Kikinis, R.: Surgical assist robot for the active navigation in the intraoperative MRI: hardware design issues 1, 727–732 (2000)Google Scholar
  3. 3.
    Cole, G., Pilitsis, J., Fischer, G.S.: Design of a robotic system for MRI-guided deep brain stimulation electrode placement. In: Proc. IEEE Int. Conf. Robotics and Automation, ICRA 2009, pp. 4450–4456 (2009)Google Scholar
  4. 4.
    Fischer, G.S., Iordachita, I., Csoma, C., Tokuda, J., DiMaio, S.P., Tempany, C.M., Hata, N., Fichtinger, G.: MRI-Compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Transactions on Mechatronics 13(3), 295–305 (2008)CrossRefGoogle Scholar
  5. 5.
    Fischer, G.S., Krieger, A., Iordachita, I., Csoma, C., Whitcomb, L.L., Fichtinger, G.: MRI compatibility of robot actuation techniques–a comparative study. Med. Image Comput. Comput. Assist Interv. 11(pt. 2), 509–517 (2008)Google Scholar
  6. 6.
    Gassert, R., Moser, R., Burdet, E., Bleuler, H.: MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Transactions on Mechatronics 11(2), 216–224 (2006)CrossRefGoogle Scholar
  7. 7.
    Kokes, R., Lister, K., Gullapalli, R., Zhang, B., MacMillan, A., Richard, H., Desai, J.: Towards a teleoperated needle driver robot with haptic feedback for RFA of breast tumors under continuous MRI. Medical Image Analysis 13(3), 445–455 (2009)CrossRefGoogle Scholar
  8. 8.
    Krieger, A., Iordachita, I., Song, S.E., Cho, N., Guion, P., Fichtinger, G., Whitcomb, L.: Development and preliminary evaluation of an actuated MRI-compatible robotic device for MRI-guided prostate intervention. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1066–1073 (2010)Google Scholar
  9. 9.
    Masamune, K., Kobayashi, E., Masutani, Y., Suzuki, M., Dohi, T., Iseki, H., Takakura, K.: Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J. Image Guid Surg. 1(4), 242–248 (1995)CrossRefGoogle Scholar
  10. 10.
    Stoianovici, D., Patriciu, A., Petrisor, D., Mazilu, D., Kavoussi, L.: A new type of motor: pneumatic step motor. IEEE/ASME Transactions on Mechatronics 12(1), 98–106 (2007)CrossRefGoogle Scholar
  11. 11.
    Su, H., Camilo, A., Cole, G., Hata, N., Tempany, C., Fischer, G.: High-field MRI compatible needle placement robot for prostate interventions. In: Proceedings of MMVR18 (Medicine Meets Virtual Reality), Newport Beach, California, USA (2011)Google Scholar
  12. 12.
    Su, H., Shang, W., Cole, G., Harrington, K., Fischer, G.S.: Haptic system design for MRI-guided needle based prostate brachytherapy. In: IEEE Haptics Symposium 2010. IEEE, Boston (2010)Google Scholar
  13. 13.
    Tokuda, J., Fischer, G.S., DiMaio, S.P., Gobbi, D.G., Csoma, C., Mewes, P.W., Fichtinger, G., Tempany, C.M., Hata, N.: Integrated navigation and control software system for MRI-guided robotic prostate interventions. Comput. Med. Imaging Graph. 34(1), 3–8 (2010)CrossRefGoogle Scholar
  14. 14.
    Tokuda, J., Fischer, G.S., Papademetris, X., Yaniv, Z., Ibanez, L., Cheng, P., Liu, H., Blevins, J., Arata, J., Golby, A.J., Kapur, T., Pieper, S., Burdette, E.C., Fichtinger, G., Tempany, C.M., Hata, N.: Openigtlink: an open network protocol for image-guided therapy environment. Int. J. Med. Robot 5(4), 423–434 (2009)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Cole, G.A., Su, H., Pilitsis, J.G., Fischer, G.S.: MRI compatibility evaluation of a piezoelectric actuator system for a neural interventional robot. In: Proc. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 6072–6075 (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Gregory A. Cole
    • 1
  • Kevin Harrington
    • 1
  • Hao Su
    • 1
  • Alex Camilo
    • 1
  • Julie G. Pilitsis
    • 1
    • 2
  • Gregory S. Fischer
    • 1
  1. 1.Automation and Interventional Medicine LaboratoryWorcester Polytechnic InstituteWorcesterUSA
  2. 2.Albany Medical CollegeAlbanyUSA

Personalised recommendations