Cost-Effective Mapping Using Unmanned Aerial Vehicles in Ecology Monitoring Applications

  • Mitch Bryson
  • Alistair Reid
  • Calvin Hung
  • Fabio Tozeto Ramos
  • Salah Sukkarieh
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 79)

Abstract

Ecology monitoring of large areas of farmland, rangelands and wilderness relies on routine map building and picture compilation, traditionally performed using high-flying surveys with manned-aircraft or through satellite remote sensing. Unmanned Aerial Vehicles (UAVs) are a promising alternative as a data collection platform due to the small-size, longer endurance and thus cost-effectiveness of these systems. Additionally UAVs can fly lower to the ground, collecting higher-resolution imagery than with manned aircraft or satellites. This paper discusses the development and experimental evaluation of systems and algorithms for airborne environment mapping, object detection and vegetation classification using low-cost sensor data including monocular vision collected from a UAV. Experimental results of the system are presented in multiple flights of our UAV system in three different environments and two different ecology monitoring applications, operating in remote locations in outback Australia.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The Quickhull algorithm for convex hulls. ACM Trans. on Mathematical Software 22(4), 469–483 (1996)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bouguet, J.: Camera Calibration Toolbox for MATLAB, http://www.vision.caltech.edu/bouguetj/calib_doc/ (retrieved September 7, 2010)
  3. 3.
    Bryson, M., Reid, A., Ramos, F., Sukkarieh, S.: Airborne Vision-Based Mapping and Classification of Large Farmland Environments. Journal of Field Robotics 27(5), 632–655 (2010)CrossRefGoogle Scholar
  4. 4.
    Bryson, M., Sukkarieh, S.: A Comparison of Feature and Pose-Based Airborne Mapping using Monocular Vision and Inertial Sensors. IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)Google Scholar
  5. 5.
    Clark, R.R., Lin, M.H., Taylor, C.J.: 3D Environment Capture from Monocular Video and Inertial Data. In: SPIE on Three-Dimensional Image Capture and Applications (2006)Google Scholar
  6. 6.
    Davis, T.: Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms. SIAM, Philadelphia (2006)MATHCrossRefGoogle Scholar
  7. 7.
    Eustice, R., Singh, H., Leonard, J., Walter, M., Ballard, R.: Visually Navigating the RMS Titanic with SLAM Information Filters. In: Robotics: Science and Systems (2005)Google Scholar
  8. 8.
    Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using the second order information for training SVM. Journal of Machine Learning Research 6, 1889–1918 (2005)MathSciNetMATHGoogle Scholar
  9. 9.
    Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28(2), 337–407 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Heeger, D., Bergen, J.: Pyramid-based texture analysis/synthesis. In: Proceedings of the 22nd International Conference on Computer Graphics and Interactive Techniques (1995)Google Scholar
  11. 11.
    Hsieh, P., Lee, L., Chen, N.: Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing. IEEE Transactions on Geoscience and Remote Sensing 39(12), 2657–2663 (2001)CrossRefGoogle Scholar
  12. 12.
    Hung, C., Bryson, M., Sukkarieh, S.: Multi-class Predictive Template for Tree Crown Detection. ISPRS Journal of Photogrammetry and Remote Sensing 68, 170–183 (2012)CrossRefGoogle Scholar
  13. 13.
    Kaess, M., Ranganathan, A., Dallaert, F.: iSAM: Fast Incremental Smoothing and Mapping with Efficient Data Association. In: IEEE International Conference on Robotics and Automation (2007)Google Scholar
  14. 14.
    Klinken, R., Shepherd, D., Parr, R., Robinson, T., Anderson, L.: Mapping mesquite (prosopis) distribution and density using visual aerial surveys. Rangeland Ecology Management 60, 408–416 (2007)CrossRefGoogle Scholar
  15. 15.
    van Klinken, R.D., Shepherd, D., Parr, R., Robinson, T.P., Anderson, L.: Mapping Mesquite (Prosopis) Distribution and Density Using Visual Aerial Surveys. Rangeland Ecology Management 60, 408–416 (2007)CrossRefGoogle Scholar
  16. 16.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  17. 17.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Imaging Understanding Workshop (1981)Google Scholar
  18. 18.
    Maybeck, P.S.: Stochastic Models, Estimation and Control, vol. 1. Academic Press (1979)Google Scholar
  19. 19.
    Medlin, C.R., Shaw, D.R., Gerard, P.D., LaMastus, F.E.: Using remote sensing to detect weed infestations in Glycine max. Weed Science 48(3), 393–398 (2000)CrossRefGoogle Scholar
  20. 20.
    Mostafa, M., Schwarz, K.: A Multi-Sensor System for Airborne Image Capture and Georeferencing. Photogrammetric Engineering and Remote Sensing 66(12), 1417–1423 (2000)Google Scholar
  21. 21.
    Shi, J., Tomasi, C.: Good Features to Track. In: IEEE Conference on Computer Vision and Pattern Recognition (1994)Google Scholar
  22. 22.
    Torr, P.H.S., Murray, D.W.: The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix. International Journal of Computer Vision 24(3), 271–300 (1997)CrossRefGoogle Scholar
  23. 23.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment – A Modern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Mitch Bryson
    • 1
  • Alistair Reid
    • 1
  • Calvin Hung
    • 1
  • Fabio Tozeto Ramos
    • 1
  • Salah Sukkarieh
    • 1
  1. 1.Australian Centre for Field RoboticsUniversity of SydneySydneyAustralia

Personalised recommendations