A Bayesian Framework for Estimating Respiratory Liver Motion from Sparse Measurements

  • Frank Preiswerk
  • Patrik Arnold
  • Beat Fasel
  • Philippe C. Cattin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7029)


In this paper, we present an approach for modelling and predicting organ motion from partial information. We used 4D-MRI sequences of 12 subjects to build a statistical population model for respiratory motion of the liver. Using a Bayesian reconstruction approach, a pre-operative CT scan and a few known surrogate markers, we are able to accurately predict the position of the entire liver at all times. The surrogates may, for example, come from ultrasound, portal images captured during radiotherapy or from implanted electromagnetic beacons. In leave-one-out experiments, we achieve an average prediction error of 1.2 mm over sequences of 20 min with only three surrogates. Our model is accurate enough for clinically relevant treatment intervals and has the potential to be used for adapting the gating window in tumour therapy or even for tracking a tumour continuously during irradiation.


respiratory motion statistical model prediction tumour therapy liver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM T. Math. Software 22(4), 469–483 (1996)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Blanz, V., Vetter, T.: Reconstructing the complete 3D shape of faces from partial information. Informationstechnik und Technische Informatik 44(6), 295–302 (2002)Google Scholar
  3. 3.
    Ehrhardt, J., Werner, R., Schmidt-Richberg, A., Handels, H.: Statistical modeling of 4d respiratory lung motion using diffeomorphic image registration. IEEE Transactions on Medical Imaging 30(2), 251–265 (2011)CrossRefGoogle Scholar
  4. 4.
    He, T., Xue, Z., Xie, W., Wong, S.T.C.: Online 4-D CT Estimation for Patient-Specific Respiratory Motion Based on Real-Time Breathing Signals. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010 Part III. LNCS, vol. 6363, pp. 392–399. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Rohlfing, T., Maurer Jr., C.R., O’Dell, W.G., Zhong, J.: Modeling liver motion and deformation during the respiratory cycle using intensity-based nonrigid registration of gated MR images. Med. Phys. 31(3), 427–432 (2004)CrossRefGoogle Scholar
  6. 6.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE T. Med. Imag. 18(8), 712–721 (1999)CrossRefGoogle Scholar
  7. 7.
    Shirato, H., Seppenwoolde, Y., Kitamura, K., Onimura, R., Shimizu, S.: Intrafractional tumor motion: lung and liver. Semin. Radiat. Oncol. 14(1), 10–18 (2004)CrossRefGoogle Scholar
  8. 8.
    von Siebenthal, M., Cattin, P.C., Gamper, U., Lomax, A., Székely, G.: 4D MR Imaging Using Internal Respiratory Gating. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 336–343. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    von Siebenthal, M., Székely, G., Lomax, A., Cattin, P.: Inter-Subject Modelling of Liver Deformation During Radiation Therapy. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 659–666. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    von Siebenthal, M., Székely, G., Lomax, A., Cattin, P.: Systematic errors in respiratory gating due to intrafraction deformations of the liver. Med. Phys. 34(9), 3620–3629 (2007)CrossRefGoogle Scholar
  11. 11.
    Zsemlye, G.: Shape Prediction from Partial Information. Ph.D. thesis, ETH Zurich (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Frank Preiswerk
    • 1
  • Patrik Arnold
    • 1
  • Beat Fasel
    • 1
  • Philippe C. Cattin
    • 1
  1. 1.Medical Image Analysis CenterUniversity of BaselSwitzerland

Personalised recommendations