Advertisement

Inverse Consistency Error in the Registration of Prone and Supine Images in CT Colonography

  • Holger R. Roth
  • Thomas E. Hampshire
  • Jamie R. McClelland
  • Mingxing Hu
  • Darren J. Boone
  • Greg G. Slabaugh
  • Steve Halligan
  • David J. Hawkes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7029)

Abstract

Robust registration between prone and supine data acquisitions for CT colonography is pivotal for medical interpretation but a challenging problem. One measure when evaluating non-rigid registration algorithms over the whole of the deformation field is the inverse consistency error, which suggests improved registration quality when the inverse deformation is consistent with the forward deformation. We show that using computed landmark displacements to initialise an intensity based registration reduces the inverse consistency error when using a state-of-the-art non-rigid b-spline registration method. This method aligns prone and supine 2D images derived from CT colonography acquisitions in a cylindrical domain. Furthermore, we demonstrate that using the same initialisation also improves registration accuracy for a set of manually identified reference points in cases exhibiting local luminal collapse.

Keywords

CT colonography image registration computer aided diagnosis and interventions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christensen, G., Geng, X., Kuhl, J., Bruss, J., Grabowski, T., Pirwani, I., Vannier, M., Allen, J., Damasio, H.: Introduction to the non-rigid image registration evaluation project (nirep). Biomedical Image Registration, 128–135 (2006)Google Scholar
  2. 2.
    Christensen, G., Johnson, H.: Consistent image registration. IEEE Transactions on Medical Imaging 20(7), 568–582 (2001)CrossRefGoogle Scholar
  3. 3.
    Hampshire, T., Roth, H., Hu, M., Boone, D., Slabaugh, G., Punwani, S., Halligan, S., Hawkes, D.: Automatic Prone to Supine Haustral Fold Matching in CT Colonography Using a Markov Random Field Model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 508–515. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Koenderink, J.: Solid shape. MIT Press, Cambridge (1990)Google Scholar
  5. 5.
    Modat, M., Ridgway, G., Taylor, Z., Lehmann, M., Barnes, J., Hawkes, D., Fox, N., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Meth. Prog. Bio. 98(3), 278–284 (2010)CrossRefGoogle Scholar
  6. 6.
    Roth, H.R., McClelland, J.R., Boone, D.J., Modat, M., Cardoso, M.J., Hampshire, T.E., Hu, M., Punwani, S., Ourselin, S., Slabaugh, G.G., Halligan, S., Hawkes, D.J.: Registration of the endoluminal surfaces of the colon derived from prone and supine ct colonography. Medical Physics 38(6), 3077–3089 (2011)CrossRefGoogle Scholar
  7. 7.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: Application to breast mr images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  8. 8.
    Taylor, S., Laghi, A., Lefere, P., Halligan, S., Stoker, J.: European Society of Gastrointestinal and Abdominal Radiology (ESGAR): Consensus statement on CT colonography. European Radiology 17(2), 575–579 (2007)CrossRefGoogle Scholar
  9. 9.
    Yoshida, H., Nappi, J.: Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans. Med. Imaging 20(12), 1261–1274 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Holger R. Roth
    • 1
  • Thomas E. Hampshire
    • 1
  • Jamie R. McClelland
    • 1
  • Mingxing Hu
    • 1
  • Darren J. Boone
    • 2
  • Greg G. Slabaugh
    • 3
  • Steve Halligan
    • 2
  • David J. Hawkes
    • 1
  1. 1.Centre for Medical Image ComputingUniversity College LondonLondonUK
  2. 2.Department of Specialist RadiologyUniversity College HospitalLondonUK
  3. 3.Medicsight PLCLondonUK

Personalised recommendations