Enhanced Sampling for Biomolecular Simulations

  • Workalemahu Berhanu
  • Ping Jiang
  • Ulrich H. E. Hansmann
Part of the Springer Series in Bio-/Neuroinformatics book series (SSBN, volume 1)


The use of computer simulations as “virtual microscopes” is limited by sampling difficulties that arise fromthe large dimensionality and the complex energy landscapes of biological systems leading to poor convergences already in folding simulations of single proteins. In this chapter, we discuss a few strategies to enhance sampling in bimolecular simulations, and present some recent applications.


Energy Landscape Menkes Disease Parallel Tempering Replica Exchange Replica Exchange Molecular Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lindorff-Larsen, K., Piana, S., Dror, R.O., Shaw, D.E.: How Fast-Folding Proteins Fold. Science 334, 517–520 (2011)CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Ding, F., Nie, H., Serohjos, A.W., Sharma, S., Wilocx, K.C., Yin, S., Dokholyan, N.V.: Protein folding: Then and now. Arch. Biochem. Biophys. 469, 4–19 (2007)CrossRefGoogle Scholar
  3. 3.
    Daggett, V., Fersht, A.: Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28, 18–25 (2003)CrossRefGoogle Scholar
  4. 4.
    Daggett, V.: Molecular Dynamics simulations of the protein unfolding/folding reaction. Acc. Chem. Res. 35, 422–429 (2002)CrossRefGoogle Scholar
  5. 5.
    Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett B195, 216–221 (1987)Google Scholar
  6. 6.
    Brass, A., Pendleton, B.J., Chen, Y., Robson, B.: Hybrid Monte Carlo simulation theory and initial comparison with molecular dynamics. Biopolymers 33, 1307–1315 (1993)CrossRefGoogle Scholar
  7. 7.
    Hansmann, U.H.E., Wille, L.: Global Optimization by Energy Landscape Paving. Phys. Rev. Lett. 88, 068105 (2002)CrossRefGoogle Scholar
  8. 8.
    Schug, A., Wenzel, W., Hansmann, U.H.E.: Energy Landscape Paving Simulations of the trp-cage Protein. J. Chem. Phys. 122, 194711 (2005)CrossRefGoogle Scholar
  9. 9.
    Hansmann, U.H.E., Okamoto, Y.: The Generalized-Ensemble Approach for Protein Folding Simulations. In: Stauffer, D. (ed.) Annual Reviews in Computational Physics, vol. VI, pp. 129–157. World Scientific, Singapore (1998)Google Scholar
  10. 10.
    Kumar, S., Payne, P., Vásquez, M.: Method for free-energy calculations using iterative techniques. J. Comp. Chem. 17, 1269–1275 (1996)CrossRefGoogle Scholar
  11. 11.
    Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comp. Phys. 23, 187–199 (1977)CrossRefGoogle Scholar
  12. 12.
    Berg, B.A., Neuhaus, T.: Multicanonical algorithms for first order phase transitions. Phys. Lett. B267, 249–253 (1991)Google Scholar
  13. 13.
    Hansmann, U.H.E., Okamoto, Y.: Prediction of Peptide Conformation by Multicanonical Algorithm: A New Approach to the Multiple-Minima Problem. J. Comp. Chem. 14, 1333–1338 (1993)CrossRefGoogle Scholar
  14. 14.
    Hansmann, U.H.E., Okamoto, Y., Eisenmenger, F.: Molecular dynamics, Langevin and hybrid Monte Carlo simulations in a multicanonical ensemble. Chem. Phys. Lett. 259, 321–330 (1996)CrossRefGoogle Scholar
  15. 15.
    Ferrenberg, A.M., Swendsen, R.H.: New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett. 61, 2635–2638 (1988); Optimized Monte Carlo Data Analysis. Phys. Rev. Lett. 63, 1195-1198 (1989) CrossRefGoogle Scholar
  16. 16.
    Berg, B.A.: Markov Chain Monte Carlo Simulations and their Statistical Analysis. World Scientific, Singapore (2004)zbMATHGoogle Scholar
  17. 17.
    Hansmann, U.H.E., Okamoto, Y.: Comparative Study of Multicanonical and Simulated Annealing Algorithms in the Protein Folding Problem. Physica A 212, 415–437 (1994)CrossRefGoogle Scholar
  18. 18.
    Wang, F.G., Landau, D.P.: Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053 (2001)CrossRefGoogle Scholar
  19. 19.
    Hansmann, U.H.E., Okamoto, Y.: Finite-size scaling of helix-coil transitions in poly-alanine studied by multicanonical simulations. J. Chem. Phys. 110, 1267–1276 (1999)CrossRefGoogle Scholar
  20. 20.
    Hansmann, U.H.E., Okamoto, Y.: New Monte Carlo Algorithms for Protein Folding. Curr. Opin. Struc. Biol. 9, 177–184 (1999)CrossRefGoogle Scholar
  21. 21.
    Curado, E.M.F., Tsallis, C.: Possible Generalization of Boltzmann-Gibbs Statistics. J. Phys. A: Math. Gen. 27, 3663 (1994)CrossRefGoogle Scholar
  22. 22.
    Wenzel, W., Hamacher, K.: Stochastic Tunneling Approach for Global Minimization of Complex Potential Energy Landscapes. Phys. Rev. Let. 82, 3003 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Hansmann, U.H.E.: Protein Folding Simulations in a Deformed Energy Landscape. Eur. Phy. J. B 12, 607–612 (1999)CrossRefGoogle Scholar
  24. 24.
    Laio, A., Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99, 12562–12566 (2002)CrossRefGoogle Scholar
  25. 25.
    Lyubartsev, A.P., Martinovski, A.A., Shevkunov, S.V., Vorontsov-Velyaminov, P.N.: New approach to Monte Carlo calculations of the free energy: Method of expanded ensembles. J. Chem. Phys. 96, 1776–1783 (1992); Marinari, E., Parisi, G.: Simulated Tempering: A new Monte Carlo Scheme. Europhysics Letters 19, 451-458 (1992) CrossRefGoogle Scholar
  26. 26.
    Hukushima, K., Nemoto, K.: Exchange Monte Carlo Method and Applications to Spin Glass Simulations. J. Phys. Soc. (Japan) 65, 1604–1608 (1996); Geyer, G.J., Thompson, E.A.: Annealing Markov Chain Monte Carlo with Applications to Ancestral Inference. J. Am. Stat. Assn. 90, 909–920 (1995)CrossRefGoogle Scholar
  27. 27.
    Hansmann, U.H.E.: Parallel Tempering Algorithm for Conformational Studies of Biological Molecules. Chem. Phys. Lett. 281, 140–150 (1997)CrossRefGoogle Scholar
  28. 28.
    Periole, X., Mark, A.E.: Convergence and sampling efficiency of replica-exchange molecular dynamic simulations of peptide folding in explicit solvent. J. Chem. Phys. 126, 014903 (2007)CrossRefGoogle Scholar
  29. 29.
    Abraham, M.J., Gready, J.E.: Ensuring mixing efficiency of replica-exchange molecular dynamics simulations. J. Chem. Theo. Comp. 4, 1119–1128 (2008)CrossRefGoogle Scholar
  30. 30.
    Sindhikara, D.J., Emerson, D.J., Roitberg, A.E.: Exchange often and properly in replica exchange Molecular Dynamics. J.Chem.Theo.Comp. 6, 2804–2808 (2010)CrossRefGoogle Scholar
  31. 31.
    Sindhikara, D.J., Emerson, D.J., Roitberg, A.E.: Exchange frequency in replica exchange molecular dynamics. J. Chem. Phys. 128, 10 (2008)CrossRefGoogle Scholar
  32. 32.
    Rhee, Y.M., Pande, V.S.: Multiplexed-replica exchange molecular dynamics method for protein folding simulation. Biophys. J. 84, 755–786 (2003)CrossRefGoogle Scholar
  33. 33.
    Wallace, J.A., Shen, J.K.: Continuous Constant pH Molecular Dynamics in Explicit Solvent with pH-Based Replica Exchange. J. Chem. Theo. Comp. 7, 2617–2629 (2011)CrossRefGoogle Scholar
  34. 34.
    Kwak, W., Hansmann, U.H.E.: Efficient Sampling of Protein Structures by Model Hopping. Phys. Rev. Let. 95, 138102 (2005)CrossRefGoogle Scholar
  35. 35.
    Fukunishi, H., Watanabe, O., Takada, S.: On the Hamiltonian replica exchange method for efficient sampling, of biomolecular systems: Application to protein structure prediction. J. Chem. Phys. 116, 9058–9067 (2002)CrossRefGoogle Scholar
  36. 36.
    Gront, D., Kolinski, A., Hansmann, U.H.E.: Exploring protein energy landscape with hierarchical clustering. Int. J. Quant. Chem. 105, 826 (2005)CrossRefGoogle Scholar
  37. 37.
    Williamson, T.E., Vitalis, A., Crick, S.L., Pappu, R.V.: Modulation of Polyglutamine Conformations and Dimer Formation by the N-Terminus of Huntingtin. J. Mol. Biol. 396, 1295–1309 (2010)CrossRefGoogle Scholar
  38. 38.
    Vitalis, A., Pappu, R.V.: Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides. Biophys. Chem. 159, 14–33 (2011)CrossRefGoogle Scholar
  39. 39.
    Nadler, W., Hansmann, U.H.E.: Generalized Ensemble and Tempering Simulations: A Unified View. Phys. Rev. E 75, 026109 (2007)CrossRefGoogle Scholar
  40. 40.
    Nadler, W., Hansmann, U.H.E.: Optimized explicit-solvent replica-exchange molecular dynamics from scratch. J. Phys.Chem. B 112, 10386 (2008)CrossRefGoogle Scholar
  41. 41.
    Trebst, S., Troyer, M., Hansmann, U.H.E.: Optimized parallel tempering simulations of proteins. J. Chem. Phys. 124, 174903 (2006)CrossRefGoogle Scholar
  42. 42.
    Nadler, W., Meinke, J.A., Hansmann, U.H.E.: Folding Proteins by First-Passage-Times Optimized Replica Exchange. Phys. Rev. E 78, 061905 (2008)CrossRefGoogle Scholar
  43. 43.
    Gallicchio, E., Levy, R.M., Parashar, M.: Asynchronous replica exchange for molecular simulations. J. Comput. Chem. 29, 788–794 (2008)CrossRefGoogle Scholar
  44. 44.
    Nadler, W., Hansmann, U.H.E.: Optimizing Replica Exchange Moves For Molecular Dynamics. Phys. Rev. E 76, 57102 (2007)CrossRefGoogle Scholar
  45. 45.
    Kar, P., Nadler, W., Hansmann, U.H.E.: Microcanonical Replica Exchange Molecular Dynamics Simulation of Proteins. Phys. Rev. E 80, 056703 (2009)CrossRefGoogle Scholar
  46. 46.
    Kim, B., Hagen, M., Liu, P., Friesner, R.A., Berne, B.J.: Serial Replica Exchange. J. Phys. Chem. B 111(6), 1416–1423 (2007)CrossRefGoogle Scholar
  47. 47.
    Lee, M., Olson, M.: Comparison of two adaptive temperature-based replica exchange methods applied to a sharp phase transition of protein unfolding-folding. J. Chem. Phys. 134, 244111 (2011)CrossRefGoogle Scholar
  48. 48.
    Okur, A., Wickstrom, L., Layten, M., Geney, R., Song, K., Hornak, V., Simmerling, C.: Improved efficiency of replica exchange simulations through use of a hybrid explicit/implicit solvation model. J. Chem. Theory Comput. 2, 420–433 (2006)CrossRefGoogle Scholar
  49. 49.
    Huang, X., Hagen, M., Kim, B., Friesner, R.A., Zhou, R., Berne, B.J.: Replica exchange with solute tempering: efficiency in large scale systems. J. Phys. Chem. B 111, 5405–5410 (2007)CrossRefGoogle Scholar
  50. 50.
    Wang, J., Zhu, W., Li, G., Hansmann, U.H.E.: Velocity-scaling for Replica Exchange Simulations of Proteins in Explicit Solvent. J. Chem. Phys. 135, 084115 (2011)CrossRefGoogle Scholar
  51. 51.
    Lyman, E., Ytreberg, F.M., Zuckerman, D.M.: Resolution exchange simulation. Phys. Rev. Lett. 96, 028105 (2006)CrossRefGoogle Scholar
  52. 52.
    Lyman, E., Zuckerman, D.M.: Resolution exchange simulation with incremental coarsening. J. Chem. Theory Comput. 2, 656–666 (2006)CrossRefGoogle Scholar
  53. 53.
    Liu, P., Shi, Q., Lyman, E., Both, G.A.: Reconstructing atomistic detail for coarse-grained models with resolution exchange. J. Chem. Phys. 129, 114103 (2008)CrossRefGoogle Scholar
  54. 54.
    Mohanty, S., Meinke, J.H., Zimmermann, O., Hansmann, U.H.E.: Simulation of Top7-CFr: a transient helix extension guides folding. Proc. Natl. Acad. Sci. U.S.A. 105, 8004–8007 (2008)CrossRefGoogle Scholar
  55. 55.
    Mohanty, S., Hansmann, U.H.E.: Caching of a Chameleon Segment facilitates Folding of a Protein with End-to-End β-sheet. J. Phys. Chem. B 112, 15134 (2008)CrossRefGoogle Scholar
  56. 56.
    Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., Baker, D.: Design of a Novel Globular Protein Fold with Atomic Level Accuracy. Science 302, 1364–1368 (2003)CrossRefGoogle Scholar
  57. 57.
    Dantas, G., Watters, A.L., Lunde, B.M., Eletr, Z.M., Isern, N.G., Roseman, T., Lipfert, J., Doniach, S., Tompa, M., Kuhlman, B., Stoddard, B.L., Varani, G., Baker, D.: Mis-translation of a Computationally Designed Protein Yields an Exceptionally Stable Homodimer: Implications for Protein Engineering and Evolution. J. Mol. Biol. 362, 1004–1024 (2006)CrossRefGoogle Scholar
  58. 58.
    Gaye, M.L., Hardwick, C., Kouza, M., Hansmann, U.H.E.: Chamelonicity and folding of the C-fragment of TOP7. Eur. Phys. Let. 97, 68003 (2012)CrossRefGoogle Scholar
  59. 59.
    Kouza, M., Gowtham, S., Seel, M., Hansmann, U.H.E.: A numerical investigation into possible mechanisms by that the A629P mutant of ATP7A causes Menkes Disease. Phys. Chem. Chem. Phys. 12, 11390–11397 (2010)CrossRefGoogle Scholar
  60. 60.
    Jiang, P., Hansmann, U.H.E.: Modeling structural flexibility of proteins with Go-models. J. Chem. Theory Comput. 8, 2127–2133 (2012)CrossRefGoogle Scholar
  61. 61.
    Alexander, P., He, Y., Chen, Y., Orban, J., Bryan, P.: A minimal sequence code for switching protein structure and function. Proc. Natl. Acad. Sci U.S.A. 106, 21149–21154 (2009)CrossRefGoogle Scholar
  62. 62.
    Kouza, M., Hansmann, U.H.E.: Folding simulations of the A and B domains of protein G. J. Phys. Chem. B 116, 6645–6653 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Workalemahu Berhanu
    • 1
  • Ping Jiang
    • 1
  • Ulrich H. E. Hansmann
    • 1
  1. 1.Dept. of Chemistry and BiochemistryUniversity of OklahomaNormanUSA

Personalised recommendations