Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes pp 557-598 | Cite as
Theoretical and Computational Aspects of Protein Structural Alignment
Abstract
Computing alignments of proteins based on their structure is one of the fundamental tasks of bioinformatics. It is crucial in all kinds of comparative analysis as well as in performing evolutionary and functional classification. Whereas determination of sequence relationships is well founded in statistical models, there is still considerable uncertainty over how to describe geometric relationships between proteins. Continuous growth of structural databases calls for fast and reliable algorithmic methods, enabling one to effectively compute alignments of pairs and larger sets of protein molecules. Although such methodologies have been developed over the past two decades, there exist so-called “difficult similarities” which may include repeats, insertions or deletions, permutations, and conformational changes. A brief overview of existing methodologies with emphasis on different approaches to decomposition of structures into smaller fragments is followed by a presentation of a formalism of local descriptors of protein structures. A formal definition of the problem of computing optimal alignments accommodating aforementioned difficulties is presented along with an analysis of the computational complexity of its important variants. Examples of “difficult similarities” and practical aspects of protein structure comparison are discussed.
Keywords
Multiple Alignment Local Similarity Maximal Clique Structural Alignment Local DescriptorPreview
Unable to display preview. Download preview PDF.
References
- 1.Alexandrov, N.: SARFing the PDB. Protein Engineering 9(9), 727 (1996)CrossRefGoogle Scholar
- 2.Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)CrossRefGoogle Scholar
- 3.Anand, B., Verma, S.K., Prakash, B.: Structural stabilization of GTP-binding domains in circularly permuted GTPases: implications for RNA binding. Nucleic Acids Res. 34(8), 2196–2205 (2006)CrossRefGoogle Scholar
- 4.Bachar, O., Fischer, D., Nussinov, R., Wolfson, H.: A computer vision based technique for 3-D sequence-independent structural comparison of proteins. Protein Eng. 6(3), 279–288 (1993)CrossRefGoogle Scholar
- 5.Barrientos, L.G., Louis, J.M., Botos, I., Mori, T., Han, Z., O’Keefe, B.R., Boyd, M.R., Wlodawer, A., Gronenborn, A.M.: The domain-swapped dimer of cyanovirin-N is in a metastable folded state: reconciliation of X-ray and NMR structures. Structure 10(5), 673–686 (2002)CrossRefGoogle Scholar
- 6.Berbalk, C., Schwaiger, C.S., Lackner, P.: Accuracy analysis of multiple structure alignments. Protein Sci. 18(10), 2027–2035 (2009)CrossRefGoogle Scholar
- 7.Bewley, C.A., Gustafson, K.R., Boyd, M.R., Covell, D.G., Bax, A., Clore, G.M., Gronenborn, A.M.: Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Nat. Struct. Biol. 5(7), 571–578 (1998)CrossRefGoogle Scholar
- 8.Bystroff, C., Baker, D.: Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 281(3), 565–577 (1998)CrossRefGoogle Scholar
- 9.Daniluk, P., Lesyng, B.: DAMA: a novel method for aligning multiple protein structures. In: Multi-Pole Approach to Structural Biology Conference, Warsaw, Poland (2011)Google Scholar
- 10.Daniluk, P., Lesyng, B.: A novel method to compare protein structures using local descriptors. BMC Bioinformatics 12(1), 344 (2011)CrossRefGoogle Scholar
- 11.Daniluk, P., Dziubiński, M., Lesyng, B., Hallay-Suszek, M., Rakowski, F., Walewski, Ł.: From experimental, structural probability distributions to the theoretical causality analysis of molecular changes. Computer Assisted Methods in Engineering and Science 19(3), 257–276 (2012)Google Scholar
- 12.Dobbins, S., Lesk, V., Sternberg, M.: Insights into protein flexibility: The relationship between normal modes and conformational change upon protein–protein docking. Proceedings of the National Academy of Sciences 105(30), 10,390 (2008)CrossRefGoogle Scholar
- 13.Dror, O., Benyamini, H., Nussinov, R., Wolfson, H.: MASS: multiple structural alignment by secondary structures. Bioinformatics 19(suppl. 1), 95–104 (2003)CrossRefGoogle Scholar
- 14.Elias, I.: Settling the intractability of multiple alignment. J. Comput. Biol. 13(7), 1323–1339 (2006)MathSciNetCrossRefGoogle Scholar
- 15.Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. A Series of books in the mathematical sciences. W. H. Freeman, San Francisco (1979)MATHGoogle Scholar
- 16.Gerstein, M., Echols, N.: Exploring the range of protein flexibility, from a structural proteomics perspective. Current Opinion in Chemical Biology 8(1), 14–19 (2004)CrossRefGoogle Scholar
- 17.Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6(3), 377–385 (1996)CrossRefGoogle Scholar
- 18.Grishin, N.V.: Fold change in evolution of protein structures. J. Struct. Biol. 134(2-3), 167–185 (2001)CrossRefGoogle Scholar
- 19.Guerler, A., Knapp, E.W.: Novel protein folds and their nonsequential structural analogs. Protein Sci. 17(8), 1374–1382 (2008)CrossRefGoogle Scholar
- 20.Holm, L., Park, J.: DaliLite workbench for protein structure comparison. Bioinformatics 16(6), 566–567 (2000)CrossRefGoogle Scholar
- 21.Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233(1), 123–138 (1993)CrossRefGoogle Scholar
- 22.Ilyin, V.A., Abyzov, A., Leslin, C.M.: Structural alignment of proteins by a novel TOPOFIT method, as a superimposition of common volumes at a topomax point. Protein Sci. 13(7), 1865–1874 (2004)CrossRefGoogle Scholar
- 23.Jung, J., Lee, B.: Protein structure alignment using environmental profiles. Protein Eng. 13(8), 535–543 (2000)CrossRefGoogle Scholar
- 24.Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallographica. Section A 32(5), 922–923 (1976)CrossRefGoogle Scholar
- 25.Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica. Section A 34(5), 827–828 (1978)CrossRefGoogle Scholar
- 26.Kawabata, T., Nishikawa, K.: Protein structure comparison using the markov transition model of evolution. Proteins 41(1), 108–122 (2000)CrossRefGoogle Scholar
- 27.Kervinen, J., Tobin, G.J., Costa, J., Waugh, D.S., Wlodawer, A., Zdanov, A.: Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J. 18(14), 3947–3955 (1999)CrossRefGoogle Scholar
- 28.Konagurthu, A.S., Whisstock, J.C., Stuckey, P.J., Lesk, A.M.: MUSTANG: a multiple structural alignment algorithm. Proteins 64(3), 559–574 (2006)CrossRefGoogle Scholar
- 29.Liepinsh, E., Andersson, M., Ruysschaert, J.M., Otting, G.: Saposin fold revealed by the NMR structure of NK-lysin. Nat. Struct. Biol. 4(10), 793–795 (1997)CrossRefGoogle Scholar
- 30.Lindqvist, Y., Schneider, G.: Circular permutations of natural protein sequences: structural evidence. Curr. Opin. Struct. Biol. 7(3), 422–427 (1997)CrossRefGoogle Scholar
- 31.Mavridis, L., Ritchie, D.: 3D-blast: 3D protein structure alignment, comparison, and classification using spherical polar fourier correlations. In: Pacific Symposium on Biocomputing, vol. 2010, pp. 281–292 (2010)Google Scholar
- 32.Mayr, G., Domingues, F.S., Lackner, P.: Comparative analysis of protein structure alignments. BMC Struct. Biol. 7, 50 (2007)CrossRefGoogle Scholar
- 33.Menke, M., Berger, B., Cowen, L.: Matt: local flexibility aids protein multiple structure alignment. PLoS Comput. Biol. 4(1), e10 (2008)MathSciNetCrossRefGoogle Scholar
- 34.Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087 (1953)CrossRefGoogle Scholar
- 35.Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)CrossRefGoogle Scholar
- 36.Niemann, H.H., Knetsch, M.L., Scherer, A., Manstein, D.J., Kull, F.J.: Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20(21), 5813–5821 (2001)CrossRefGoogle Scholar
- 37.Orengo, C.A., Taylor, W.R.: SSAP: sequential structure alignment program for protein structure comparison. Methods Enzymol. 266, 617–635 (1996)CrossRefGoogle Scholar
- 38.Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Theory and decision library: System theory, knowledge engineering, and problem solving. Kluwer Academic Publishers (1991)Google Scholar
- 39.Pearson, W., Lipman, D.: Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences 85(8), 2444 (1988)CrossRefGoogle Scholar
- 40.Ponting, C.P., Russell, R.B.: Swaposins: circular permutations within genes encoding saposin homologues. Trends Biochem. Sci. 20(5), 179–180 (1995)CrossRefGoogle Scholar
- 41.Rocha, J., Segura, J., Wilson, R.C., Dasgupta, S.: Flexible structural protein alignment by a sequence of local transformations. Bioinformatics 25(13), 1625–1631 (2009)CrossRefGoogle Scholar
- 42.Salem, S., Zaki, M., Bystroff, C.: FlexSnap: Flexible Non-sequential Protein Structure Alignment. Algorithms for Molecular Biology 5(1), 12 (2010)CrossRefGoogle Scholar
- 43.Shatsky, M., Nussinov, R., Wolfson, H.J.: FlexProt: alignment of flexible protein structures without a predefinition of hinge regions. J. Comput. Biol. 11(1), 83–106 (2004)CrossRefGoogle Scholar
- 44.Shatsky, M., Nussinov, R., Wolfson, H.J.: A method for simultaneous alignment of multiple protein structures. Proteins 56(1), 143–156 (2004)CrossRefGoogle Scholar
- 45.Shin, D.H., Lou, Y., Jancarik, J., Yokota, H., Kim, R., Kim, S.H.: Crystal structure of YjeQ from Thermotoga maritima contains a circularly permuted GTPase domain. Proc. Natl. Acad. Sci. U S A 101(36), 13,198–203 (2004)CrossRefGoogle Scholar
- 46.Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11(9), 739–747 (1998)CrossRefGoogle Scholar
- 47.Siew, N., Elofsson, A., Rychlewski, L., Fischer, D.: MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 16(9), 776–785 (2000)CrossRefGoogle Scholar
- 48.Swendsen, R.H., Wang, J.S.: Replica Monte Carlo simulation of spin glasses. Phys. Rev. Lett. 57(21), 2607–2609 (1986)MathSciNetCrossRefGoogle Scholar
- 49.Vogel, C., Morea, V.: Duplication, divergence and formation of novel protein topologies. Bioessays 28(10), 973–978 (2006)CrossRefGoogle Scholar
- 50.Wohlers, I., Domingues, F.S., Klau, G.W.: Towards optimal alignment of protein structure distance matrices. Bioinformatics 26(18), 2273–2280 (2010)CrossRefGoogle Scholar
- 51.Yang, F., Bewley, C.A., Louis, J.M., Gustafson, K.R., Boyd, M.R., Gronenborn, A.M., Clore, G.M., Wlodawer, A.: Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping. J. Mol. Biol. 288(3), 403–412 (1999)CrossRefGoogle Scholar
- 52.Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(suppl. 2), ii246–255 (2003)Google Scholar
- 53.Ye, Y., Godzik, A.: Multiple flexible structure alignment using partial order graphs. Bioinformatics 21(10), 2362–2369 (2005)CrossRefGoogle Scholar