Advertisement

Mechanostability of Virus Capsids and Their Proteins in Structure-Based Models

  • Marek Cieplak
Part of the Springer Series in Bio-/Neuroinformatics book series (SSBN, volume 1)

Abstract

Recent advances in nanotechnology have provided new experimental tools to study biological processes at the molecular level [1]. Instead of monitoring biochemical reactions involving macroscopic numbers of molecules one can now observe behavior of individual molecules by techniques of single molecule optical and force spectroscopies. The optical spectroscopy has been used primarily for identification of stages in protein folding [2, 3, 4, 5]. On the other hand, the force spectroscopy has been usually applied to establish a degree of mechanical stability through stretching either at constant speed or at constant force to induce unfolding. However, monitoring of the subsequent refolding events in a mechanically controlled environment has also been accomplished [9, 10].

Keywords

Protein Data Bank Force Peak Force Spectroscopy Protein Data Bank Code Native Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neuman, K.C., Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491–505 (2008)CrossRefGoogle Scholar
  2. 2.
    Weiss, S.: Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)CrossRefGoogle Scholar
  3. 3.
    Schuler, B., Lipman, E.A., Eaton, W.A.: Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747 (2002)CrossRefGoogle Scholar
  4. 4.
    Yang, H., Luo, G.B., Karnchanaphanurach, P., Louie, T.M., Rech, I., Cova, S., Xun, L.Y., Xie, X.S.: Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003)CrossRefGoogle Scholar
  5. 5.
    Borgia, M.B., Borgia, A., Best, R.B., Steward, A., Nettels, D., Wunderlich, B., Schuler, B., Clarke, J.: Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 474, 662–665Google Scholar
  6. 6.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997)CrossRefGoogle Scholar
  7. 7.
    Improta, S., Politou, A.S., Pastore, A.: Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Struct. 4, 323–337 (1996)CrossRefGoogle Scholar
  8. 8.
    Marszalek, P.E., Lu, H., Li, H.B., Carrion-Vazquez, M., Oberhauser, A.F., Schulten, K., Fernandez, J.M.: Nature 402, 100–103 (1999)CrossRefGoogle Scholar
  9. 9.
    Fernandez, J.M., Li, H.B.: Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004)CrossRefGoogle Scholar
  10. 10.
    Cecconi, C., Shank, E.A., Bustamante, C., Marqusee, S.: Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005)CrossRefGoogle Scholar
  11. 11.
    Carrion-Vazquez, M., Cieplak, M., Oberhauser, A.F.: Protein mechanics at the single-molecule level. In: Meyers, R.A. (Editor-in-chief) Encyclopedia of Complexity and Systems Science, pp. 7026–7050. Springer, New York (2009)CrossRefGoogle Scholar
  12. 12.
    Crampton, N., Brockwell, D.J.: Unravelling the design principles for single protein mechanical strength. Curr. Opin. Struct. Biol. 20, 508–517 (2010)CrossRefGoogle Scholar
  13. 13.
    Del Rio, A., Perez-Jimenez, R., Liu, R.C., Roca-Cusachs, P., Fernandez, J.M., Sheetz, M.P.: Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009)CrossRefGoogle Scholar
  14. 14.
    Vogel, V.: Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006)CrossRefGoogle Scholar
  15. 15.
    Hervas, R., Oroz, J., Galera-Prat, A., Goni, O., Valbuena, A., Vera, A.M., Gomez-Socilia, A., Losada-Urzaiz, F., Uversky, V.N., Menendez, M., Laurents, D.V., Bruix, M., Carrion-Vazquez, M.: Common features at the start of the neurodegeneration cascade. PLoS Biology 10, e1001335 (2012)CrossRefGoogle Scholar
  16. 16.
    Lu, H., Schulten, K.: Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interprete atomic force microscopy observations. Chem. Phys. 247, 141–153 (1999)CrossRefGoogle Scholar
  17. 17.
    Paci, E., Karplus, M.: Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc. Natl. Acad. Sci. USA 97, 6521–6526 (2000)CrossRefGoogle Scholar
  18. 18.
    Bockelmann, U., Essevaz-Roulet, B., Heslot, F.: Molecular stick-slip motion revealed by opening DNA with piconewton forces. Phys. Rev. Lett. 79, 4489–4492 (1997)CrossRefGoogle Scholar
  19. 19.
    Hoang, T.X., Cieplak, M.: Molecular dynamics of folding of secondary structures in Go-like models of proteins. J. Chem. Phys. 112, 6851–6862 (2000)CrossRefGoogle Scholar
  20. 20.
    Cieplak, M., Hoang, T.X., Robbins, M.O.: Folding and stretching in a Go-like model of titin. Proteins: Function, Structure, and Genetics 49, 114–124 (2002)CrossRefGoogle Scholar
  21. 21.
    Cieplak, M., Hoang, T.X.: Universality classes in folding times of proteins. Biophys. J. 84, 475–488 (2003)CrossRefGoogle Scholar
  22. 22.
    Cieplak, M., Hoang, T.X., Robbins, M.O.: Thermal effects in stretching of Go-like models of titin and secondary structures. Proteins: Struct. Funct. Bio. 56, 285–297 (2004)CrossRefGoogle Scholar
  23. 23.
    Sułkowska, J.I., Cieplak, M.: Mechanical stretching of proteins – a theoretical survey of the Protein Data Bank. J. Phys.: Cond. Mat. 19, 283201 (2007)CrossRefGoogle Scholar
  24. 24.
    Yang, L.J., Tan, C.H., Hsieh, M.J., Wang, J.M., Duan, Y., Cieplak, P., Caldwell, J., Kollman, P.A., Luo, R.: New-generation amber united-atom force field. J. Phys. Chem. B 110, 13166–13176 (2006)CrossRefGoogle Scholar
  25. 25.
    Go, N.: Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12, 183–210 (1983)CrossRefGoogle Scholar
  26. 26.
    Abe, H., Go, N.: Noninteracting local-structure model of folding and unfolding transition in globular proteins. II. Application to two-dimensional lattice proteins. Biopolymers 20, 1013–1031 (1981)CrossRefGoogle Scholar
  27. 27.
    Sali, A., Shakhnovich, E., Karplus, M.: How does a protein fold. Nature 369, 248–251 (1994)CrossRefGoogle Scholar
  28. 28.
    Shrivastava, I., Vishveshwara, S., Cieplak, M., Maritan, A., Banavar, J.R.: Lattice model for rapidly folding protein-like heteropolymers. Proc. Natl. Acad. Sci. USA 92, 9206–9209 (1995)CrossRefGoogle Scholar
  29. 29.
    Sułkowska, J.I., Cieplak, M.: Selection of optimal variants of Go-like models of proteins through studies of stretching. Biophys. J. 95, 3174–3191 (2008)CrossRefGoogle Scholar
  30. 30.
    Cieplak, M., Sułkowska, J.I.: Structure-Based Models of Biomolecules: Stretchnig of Proteins, Dynamics of Knots, Hydrodynamic Effects, and Indentation of Virus Capsids. In: Koliński, A. (ed.) Multiscale Approaches to Protein Modeling: Structure Prediction, Dynamics, Thermodynamics and Macromolecular Assemblies, vol. 8, pp. 179–208. Springer, New York (2010)Google Scholar
  31. 31.
    Clementi, C., Nymeyer, H., Onuchic, J.N.: Topological and energetic factors: What determines the structural details of the transition state ensemble and ”en-route” intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298, 937–953 (2000)CrossRefGoogle Scholar
  32. 32.
    Karanicolas, J., Brooks III, C.L.: The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci. 11, 2351–2361 (2002)CrossRefGoogle Scholar
  33. 33.
    Cieplak, M.: Cooperativity and contact order in protein folding. Phys. Rev. E 69, 031907 (2004)Google Scholar
  34. 34.
    Wallin, S., Zeldovich, K.B., Shakhnovich, E.I.: Folding mechanics of a knotted protein. J. Mol. Biol. 368, 884–893 (2007)CrossRefGoogle Scholar
  35. 35.
    Sikora, M., Sułkowska, J.I., Cieplak, M.: Mechanical strength of 17 132 model proteins and cysteine slipknots. PloS Comp. Biol. 5, e1000547 (2008)CrossRefGoogle Scholar
  36. 36.
    Tsai, J., Taylor, R., Chothia, C., Gerstein, M.: The packing density in proteins: Standard radii and volumes. J. Mol. Biol. 290, 253–266 (1999)CrossRefGoogle Scholar
  37. 37.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997)CrossRefGoogle Scholar
  38. 38.
    Carrion-Vasquez, M., Oberhauser, A.F., Fowler, S.B., Marszalek, P.E., Broedel, P.E., et al.: Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999)CrossRefGoogle Scholar
  39. 39.
    Valbuena, A., Oroz, J., Hervas, R.A., Vera, M., Rodriguez, D., Menendez, M., Sułkowska, J.I., Cieplak, M., Carrion-Vazquez, M.: On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc. Natl. Acad. Sci. USA 106, 13791–13796 (2009)CrossRefGoogle Scholar
  40. 40.
    Sikora, M., Cieplak, M.: Mechanical stability of multidomain proteins and novel mechanical clamps. Proteins: Struct. Funct. Bioinf. 79, 1786–1799 (2011)CrossRefGoogle Scholar
  41. 41.
    Sikora, M., Sułkowska, J.I., Witkowski, B.S., Cieplak, M.: BSDB: the Biomolecule Stretching Database. Nucl. Acid. Res. 39, D443–D450 (2011)CrossRefGoogle Scholar
  42. 42.
    Chen, J., Callis, P.R., King, J.: Mechanism of the very efficient quenching of tryptophan fluorescence in human γD- and γS-crystallins: The γ-crystallin fold may have evolved to protect tryptophan resdidues from ultraviolet photodamage. Biochemistry 48, 3708–3716 (2009)CrossRefGoogle Scholar
  43. 43.
    Flaugh, S.L., Kosinski-Collins, M.S., King, J.: Interdomain side-chain interactions in human γD-crystallin influencing folding and stability. Prot. Sci. 14, 2030–2043 (2005)CrossRefGoogle Scholar
  44. 44.
    McDonald, N.Q., Lapatto, R., Murray-Rust, J., Gunning, J., Wlodawer, A., Blundell, T.L.: New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature 414, 411–414 (1991)CrossRefGoogle Scholar
  45. 45.
    Murray-Rust, J., McDonald, N.Q., Blundell, T.L., Hosang, M., Oefner, C., Winkler, F., Bradshaw, R.A.: Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure 1, 153–159 (1993)CrossRefGoogle Scholar
  46. 46.
    Sun, P.D., Davies, D.R.: The Cystine-Knot Growth-Factor Superfamily. Annu. Rev. Biophys. Biomol. Struct. 24, 269–291 (1995)zbMATHCrossRefGoogle Scholar
  47. 47.
    Iyer, S., Acharya, K.R.: The cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines. FEBS J. 278, 4304–4322 (2011)CrossRefGoogle Scholar
  48. 48.
    Peplowski, L., Sikora, M., Nowak, W., Cieplak, M.: Molecular jamming – the cysteine slipknot mechanical clamp in all-atom simulations. J. Chem. Phys. 134, 085102 (2011)CrossRefGoogle Scholar
  49. 49.
    Sikora, M., Cieplak, M.: Cystine plug and other novel mechanisms of large mechanical stability in dimeric proteins. Phys. Rev. Lett. 109, 208101 (2012)CrossRefGoogle Scholar
  50. 50.
    Sikora, M., Cieplak, M.: Formation of cystine slipknots in dimeric proteins. Plos One 8, e57443 (2013)Google Scholar
  51. 51.
    Niewieczerzał, S., Cieplak, M.: Hydrodynamic interactions in protein folding. J. Chem. Phys. 21, 124905 (2009)Google Scholar
  52. 52.
    Plaxco, K.W., Simons, K.T., Baker, D.: Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994 (1998)CrossRefGoogle Scholar
  53. 53.
    Plaxco, K.W., Simons, K.T., Ruczinski, I., Baker, D.: Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39, 11177–11183 (2000)CrossRefGoogle Scholar
  54. 54.
    Cieplak, M., Hoang, T.X., Robbins, M.O.: Stretching of proteins in the entropic limit. Phys. Rev. E 69, 011912 (2004)CrossRefGoogle Scholar
  55. 55.
    Yang, G., Cecconi, C., Baase, W.A., Vetter, I.R., Breyer, W.A., Haack, J.A., Matthews, B.W., Dahlquist, F.W., Bustamante, C.: Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc. Natl. Acad. Sci. USA 97, 139–144 (2000)CrossRefGoogle Scholar
  56. 56.
    Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., Jaskólski, M.: Human cystatin C, an amyloidogenic protein dimerizes through three-dimensional domain swapping. Nature Struct. Biol. 8, 316–320 (2001)CrossRefGoogle Scholar
  57. 57.
    Caspar, D., Klug, A.: Physical principles in the construction of regular viruses. In: Cold Spring Harbor Symposium on Quantitative Biology, vol. 27, pp. 1–24 (1962)Google Scholar
  58. 58.
    Roos, W.H., Bruisma, R., Wuite, G.J.L.: Physical virology. Nature Physics 6, 733–743 (2010)CrossRefGoogle Scholar
  59. 59.
    Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA 103, 6184–6189 (2006)CrossRefGoogle Scholar
  60. 60.
    Klug, W.S., Bruinsma, R.F., Michel, J.-P., Knobler, C.M., Ivanovska, I.L., Schmidt, C.F., Wuite, G.J.L.: Failure of viral shells. Phys. Rev. Lett. 97, 228101 (2006)CrossRefGoogle Scholar
  61. 61.
    Carrasco, C., Carreira, A., Schaap, I.A.T., Serena, P.A., Gomez-Herrero, J., Mateu, M.G., de Pablo, P.J.: DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl. Acad. Sci. USA 103, 13706–13711 (2006)CrossRefGoogle Scholar
  62. 62.
    Carrasco, C., Castellanos, M., de Pablo, P.J., Mateu, M.G.: Manipulation of the mechanical properties of a virus by protein engineering. Proc. Natl. Acad. Sci. USA 105, 4150–4155 (2008)CrossRefGoogle Scholar
  63. 63.
    Cieplak, M., Robbins, M.O.: Nanoindentation of virus capsids in a molecular model. J. Chem. Phys. 132, 015101 (2010)CrossRefGoogle Scholar
  64. 64.
    Cieplak, M., Robbins, M.O.: Nanoindentation of 35 virus capsids in a molecular model. Plos One (in press, 2013)Google Scholar
  65. 65.
    Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks III, C.L., Reddy, V.S.: VIPERdb2: and enhanced and web API enabled relational database for structural virology. Nucl. Acids Res. 37, D436–D442 (2009), http://viperdb.scripps.edu/ CrossRefGoogle Scholar
  66. 66.
    Gibbons, M.M., Klug, W.S.: Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75, 031901 (2007)CrossRefGoogle Scholar
  67. 67.
    Gibbons, M.M., Klug, W.S.: Influence of nonuniform geometry on nanoindentation of viral capsids. Biophys. J. 95, 3640–3649 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations