Alleviating the Influence of Weak Data Asymmetries on Granger-Causal Analyses

  • Stefan Haufe
  • Vadim V. Nikulin
  • Guido Nolte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7191)

Abstract

We introduce the concepts of weak and strong asymmetries in multivariate time series in the context of causal modeling. Weak asymmetries are by definition differences in univariate properties of the data, which are not necessarily related to causal relationships between time series. Nevertheless, they might still mislead (in particular Granger-) causal analyses. We propose two general strategies to overcome the negative influence of weak asymmetries in causal modeling. One is to assess the confidence of causal predictions using the antisymmetry-symmetry ratio, while the other one is based on comparing the result of a causal analysis to that of an equivalent analysis of time-reversed data. We demonstrate that Granger Causality applied to the SiSEC challenge on causal analysis of simulated EEG data greatly benefits from our suggestions.

Keywords

Weak/strong asymmetries ASR time inversion Granger Causality SiSEC challenge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969)CrossRefGoogle Scholar
  2. 2.
    Haufe, S.: Towards EEG source connectivity analysis. PhD thesis, TU Berlin (2011)Google Scholar
  3. 3.
    Kamiński, M., Ding, M., Truccolo, W.A., Bressler, S.L.: Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85, 145–157 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Nolte, G., Meinecke, F.C., Ziehe, A., Müller, K.-R.: Identifying interactions in mixed and noisy complex systems. Phys. Rev. E 73, 051913 (2006)CrossRefGoogle Scholar
  5. 5.
    Nolte, G., Ziehe, A., Nikulin, V.V., Schlögl, A., Krämer, N., Brismar, T., Müller, K.R.: Robustly estimating the flow direction of information in complex physical systems. Phys. Rev. Lett. 100, 234101 (2008)CrossRefGoogle Scholar
  6. 6.
    Nolte, G., Ziehe, A., Krämer, N., Popescu, F., Müller, K.-R.: Comparison of Granger causality and phase slope index. JMLR W&CP 6, 267–276 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Haufe
    • 1
    • 2
  • Vadim V. Nikulin
    • 3
  • Guido Nolte
    • 4
  1. 1.Machine LearningBerlin Institute of TechnologyGermany
  2. 2.Bernstein Focus NeurotechnologyBerlinGermany
  3. 3.NeurophysicsCharité University MedicineBerlinGermany
  4. 4.Intelligent Data AnalysisFraunhofer Institute FIRSTBerlinGermany

Personalised recommendations