An Algebraic Method for Approximate Rank One Factorization of Rank Deficient Matrices

  • Franz J. Király
  • Andreas Ziehe
  • Klaus-Robert Müller
Conference paper

DOI: 10.1007/978-3-642-28551-6_34

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7191)
Cite this paper as:
Király F.J., Ziehe A., Müller KR. (2012) An Algebraic Method for Approximate Rank One Factorization of Rank Deficient Matrices. In: Theis F., Cichocki A., Yeredor A., Zibulevsky M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg

Abstract

In this paper we consider the problem of finding approximate common rank one factors for a set of matrices. Instead of jointly diagonalizing the matrices, we perform calculations directly in the problem intrinsic domain: we present an algorithm, AROFAC, which searches the approximate linear span of the matrices using an indicator function for the rank one factors, finding specific single sources. We evaluate the feasibility of this approach by discussing simulations on generated data and a neurophysiological dataset. Note however that our contribution is intended to be mainly conceptual in nature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Franz J. Király
    • 1
  • Andreas Ziehe
    • 1
  • Klaus-Robert Müller
    • 1
  1. 1.Machine Learning GroupTechnische Universität BerlinBerlinGermany

Personalised recommendations