Collaborative Filtering via Group-Structured Dictionary Learning

  • Zoltán Szabó
  • Barnabás Póczos
  • András Lőrincz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7191)

Abstract

Structured sparse coding and the related structured dictionary learning problems are novel research areas in machine learning. In this paper we present a new application of structured dictionary learning for collaborative filtering based recommender systems. Our extensive numerical experiments demonstrate that the presented method outperforms its state-of-the-art competitors and has several advantages over approaches that do not put structured constraints on the dictionary elements.

Keywords

collaborative filtering structured dictionary learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.: Recommender Systems Handbook. Springer, Heidelberg (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009)Google Scholar
  3. 3.
    Bach, F., Jenatton, R., Marial, J., Obozinski, G.: Convex optimization with sparsity-inducing norms. In: Optimization for Machine Learning. MIT Press (2011)Google Scholar
  4. 4.
    Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for sparse hierarchical dictionary learning. In: ICML 2010, pp. 487–494 (2010)Google Scholar
  5. 5.
    Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component analysis. AISTATS, J. Mach. Learn. Res.:W&CP 9, 366–373 (2010)Google Scholar
  6. 6.
    Mairal, J., Jenatton, R., Obozinski, G., Bach, F.: Network flow algorithms for structured sparsity. In: NIPS 2010, pp. 1558–1566 (2010)Google Scholar
  7. 7.
    Rosenblum, K., Zelnik-Manor, L., Eldar, Y.: Dictionary optimization for block-sparse representations. In: AAAI Fall 2010 Symposium on Manifold Learning (2010)Google Scholar
  8. 8.
    Kavukcuoglu, K., Ranzato, M., Fergus, R., LeCun, Y.: Learning invariant features through topographic filter maps. In: CVPR 2009, pp. 1605–1612 (2009)Google Scholar
  9. 9.
    Bottou, L., Cun, Y.L.: On-line learning for very large data sets. Appl. Stoch. Model. Bus. - Stat. Learn. 21, 137–151 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Szabó, Z., Póczos, B., Lőrincz, A.: Online group-structured dictionary learning. In: CVPR 2011, pp. 2865–2872 (2011)Google Scholar
  11. 11.
    Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative filtering algorithm. Inform. Retrieval 4, 133–151 (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Takács, G., Pilászy, I., Németh, B., Tikk, D.: Matrix factorization and neighbor based algorithms for the Netflix prize problem. In: RecSys 2008, pp. 267–274 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zoltán Szabó
    • 1
  • Barnabás Póczos
    • 2
  • András Lőrincz
    • 1
  1. 1.Faculty of InformaticsEötvös Loránd UniversityBudapestHungary
  2. 2.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations