Advertisement

Synthesis and Film Formation of Monodisperse Nanoparticles and Nanoparticle Pairs

  • Shubhra Kala
  • Marcel Rouenhoff
  • Ralf Theissmann
  • Frank Einar KruisEmail author
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The use of well-defined nanoparticles for functional film applications is described. The advantages of applying size-fractionation, e.g. by means of mobility analysis, are described together with the technological obstacles which have to be overcome. The synthesis of Au and Ge nanoparticles by means of spark discharge is described. To prepare alloy nanoparticles, two different approaches have been utilized. Au-Ge pair nanoparticles are formed by bipolar mixing after separate size selection of both materials. The synthesis of AuGe alloyed nanoparticles is also performed by co-sparking from two different electrodes. The development of an electrostatic precipitator for functional film formation is described.

Keywords

Breakdown Voltage Number Concentration Charge Current Particle Number Concentration Alloy Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    X. Bai, T.L. Wang, N. Ding, J.H. Li, B.X. Liu, Nonequilibrium alloy formation in the immisicble Cu-Mo system studied by thermodynamic calculation and ion beam mixing. J. Appl. Phys. 108, 073534-1–073534-5 (2010)Google Scholar
  2. 2.
    M. Bassu, M.L. Strambini, G. Barillaro, F. Fuso, Light emission from silicon/gold nanoparticle systems. Appl. Phys. Lett. 97, 143113-1–143113-3 (2010)Google Scholar
  3. 3.
    J. Dixkens, H. Fissan, Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci. Technol. 30, 438–453 (1999)CrossRefGoogle Scholar
  4. 4.
    J. Fernandez de la Mora, S.V. Hering, N. Rao, P.H. McMurry, Hypersonic impaction of ultrafine particles, J. Aerosol Sci. 21(2), 169–187 (1990)Google Scholar
  5. 5.
    C. Helsper, W. Mölter, F. Löffler, C. Wadenpohl, S. Kaufmann, Investigation of new aerosol generator for the production of carbon aggregate particles. Atm. Environ. 27(8), 1271–1275 (1993)CrossRefGoogle Scholar
  6. 6.
    E. Hontañón, F.E. Kruis, A Differential Mobility Analyzer (DMA) for size selection of nanoparticles at high flow rates. Aerosol Sci. Technol. 43(1), 25–37 (2009)CrossRefGoogle Scholar
  7. 7.
    E. Hontañón, F.E. Kruis, Single charging of nanoparticles by UV photoionization at high flow rates. Aerosol Sci. Technol. 42(4), 310–323 (2008)CrossRefGoogle Scholar
  8. 8.
    E. Juárez-Ruiz, U. Pal, J.A. Lombardero-Chartuni, A. Medina, J.A. Ascencio, Chemical synthesis and structural characterization of small AuZn nanoparticles. Appl. Phys. A 86, 441–446 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    S. Kala, B.R. Mehta, F.E. Kruis, A dual-deposition setup for fabricating nanoparticle-thin film hybrid structures. Rev. Sci. Instrum. 79(1), 013902 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Kala, B.R. Mehta, F.E. Kruis, V.N. Singh, Synthesis and oxidation stability of monosized and monocrystalline Pr nanoparticles. J. Mater. Res. 24(7), 2276–2285 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    F.E. Kruis, K. Nielsch, H. Fissan, B. Rellinghaus, E.F. Wassermann, Preparation of size-classified PbS nanoparticles in the gas phase. Appl. Phys. Lett. 73, 547-1–547-3) (1998)Google Scholar
  12. 12.
    M.H. Magnusson, K. Deppert, J. Malm, J. Bovin, L. Samuelson, Gold nanoparticles: Production, reshaping, and thermal charging. J. Nanopart. Res. 1(2), 243–251 (1999)CrossRefGoogle Scholar
  13. 13.
    A.D. Maynard, The development of a new thermophoretic precipitator for scanning transmission electron microscope analysis of ultrafine aerosol particles. Aerosol Sci. Technol. 23, 521–533 (1995)CrossRefGoogle Scholar
  14. 14.
    K.K. Nanda, A. Maisels, F.E. Kruis, Surface tension and sintering of free gold nanoparticles. J. Phys. Chem. C 112(35), 13488–13491 (2008)Google Scholar
  15. 15.
    S. Schwyn, E. Garwin, A. Schmidt-ott, Aerosol generation by spark discharge. J. Aerosol. Sci. 19(5), 639–642 (1988)CrossRefGoogle Scholar
  16. 16.
    S. Senapati, A. Ahmad, M.I. Khan, M. Sastry, R. Kumar, Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticle. Small 1, 517 (2005)Google Scholar
  17. 17.
    B.R. Taylor, S.K. Kauzlarich, G.R. Delgado, H.W.H. Lee, Solution synthesis and characterization of quantum confined Ge nanoparticles. Chem. Mater. 11, 2493–2500 (1999)CrossRefGoogle Scholar
  18. 18.
    N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, A. Schmidt-ott, Generation of nanoparticles by spark discharge. J. Nanopart. Res. 11, 315–332 (2009)CrossRefGoogle Scholar
  19. 19.
    C.X. Wang, G.W. Yang, Thermodynamics of metastable phase nucleation at the nanoscale. Mater. Sci. Eng. R 49, 157–202 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shubhra Kala
    • 1
  • Marcel Rouenhoff
    • 1
  • Ralf Theissmann
    • 1
  • Frank Einar Kruis
    • 1
    Email author
  1. 1.Faculty of Engineering, and CENIDEUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations