III/V Nanowires for Electronic and Optoelectronic Applications

  • Christoph Gutsche
  • Ingo Regolin
  • Andrey Lysov
  • Kai Blekker
  • Quoc-Thai Do
  • Werner Prost
  • Franz-Josef Tegude
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

III/V semiconductor nanowires are grown by the vapour–liquid solid growth mode from Au seed particles in an industrial type metal–organic vapour phase epitaxial apparatus. For electronic applications InAs nanowires with very high electron were developed on InAs (111), InAs (100), and GaAs (111) substrates. The wires were deposited on insulating host substrate for metal–insulator–semiconductor FET fabrication. Their excellent DC and RF performance are presented. For optoelectronic applications the focus is on selective n- and p-type doping. GaAs nanowires with an axial p–n junction are presented. Pronounced electroluminescence at room temperature reveals the quality of the fabricated device. Moreover, spatially resolved photocurrent microscopy shows that optical generation of carriers took place only in the vicinity of the p–n junction. A solar conversion efficiency of 9 % was obtained. In summary, III/V semiconductor nanowires are emerged to high performance and versatile nanoscaled building blocks for both electronic and optoelectronic applications.

Keywords

Atomic Layer Deposition Seed Particle Gate Length Semiconductor Nanowires GaAs Nanowires 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are especially indebted to Einar Kruis and Thomas Weber for the aerosol preparation of nanoparticles, to Daniela Sudfeld, Zi-An Li, and Marina Spasova for excellent TEM analysis, to Matthias Offer, Stephan Lüttjohan, and Axel Lorke for high-resolution photoluminescence and photocurrent analysis, and to Benjamin Münstermann for high frequency measurements.

References

  1. 1.
    F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302(R) (2006)Google Scholar
  2. 2.
    G.W. Sears, Growth of Hg-whiskers. Acta Metallurgica 1, 457 (1953)Google Scholar
  3. 3.
    R.S. Wagner, W.C. Ellis, The vapour-liquid-solid mechanism of crystal growth and its application to silicon. Trans. Met. Soc. AIME 233, 1053–1064 (1965)Google Scholar
  4. 4.
    E.I. Givargizov, Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20–30 (1975)Google Scholar
  5. 5.
    K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, H. Kakibayashi, GaAs free-standing quantum-size wires. J. Appl. Phys. 74(5), (1993)Google Scholar
  6. 6.
    M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002)Google Scholar
  7. 7.
    B.S. Sorensen, M. Aagesen, C.B. Sorensen, P.E. Lindelof, K.L. Martinez, J. Nygard, Ambipolar transistor behavior in p-doped InAs nanowires grown by molecular beam epitaxy. Appl. Phys. Lett. 92(1), 012119 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    E. Lind, M.P. Persson, Y.M. Niquet, L.E. Wernersson, Band structure effects on the scaling properties of [111] InAs nanowire MOSFETs. IEEE Trans. Electron Dev. 56 (2), 201–205 (2009)Google Scholar
  9. 9.
    V.G. Dubrovskii, G.E. Cirlin, I.P. Soshnikov, A.A. Tonkikh, N.V. Sibirev, YuB Samaonenko, V.M. Ustinov, Diffusion induced growth of GaAs nanowhiskers during molecular beam epitaxy: theory and experiment. Phys. Rev. B 71, 205325 (2005)Google Scholar
  10. 10.
    M.T. Borgström, G. Immink, B. Ketelaars, R. Algra, E.P.A.M. Bakkers, Synergetic nanowire growth. Nat. Nanotechnol. 2, 541–544 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    M.T. Borgström, M.A. Verheijen, G. Immink, T. de Smet, E.P.A.M. Bakkers, Interface study on heterostructured GaP-GaAs nanowires. Nanotechnology 17, 4010–4013 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    M.T. Björk, B. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.A. Wallenberg, L. Samuelson, One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80(6), 1058 (2002)Google Scholar
  13. 13.
    N. Sköld, L.S. Karlsson, M.W. Larsson, M.-E. Pistol, W. Seifert, J. Trägårdh, L. Samuelson, Growth and optical properties of strained GaAs-Ga\(_x\)In\(_1-x\)P core-shell nanowires. Nano Lett. 5(10), 1943–1947 (2005)Google Scholar
  14. 14.
    K. Haraguchi, T. Katsuyama, K. Hiruma, K. Ogawa, GaAs p–n junction formed in quantum wire crystals. Appl. Phys. Lett. 60(6), 745–747 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    F. Qian, Y. Li, S. Gradačak, D. Wang, C.J. Barrelet, C.M. Lieber, Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975–1979 (2004)Google Scholar
  16. 16.
    E.D. Minot, F. Kelkensberg, M. van Kouwen, J.A. van Dam, L.P. Kouwenhoven, V. Zwiller, M.T. Borgström, O. Wunnicke, M.A. Verheijen, E.P.A.M. Bakkers, Single quantum dot nanowire LEDs. Nano Lett. 7(2), 367–371 (2007)Google Scholar
  17. 17.
    P. Velling, A comparative study of GaAs- and InP-based HBT growth by means of LP-MOVPE using conventional and non gaseous sources. Prog. Cryst. Growth Charact. Mater. 41, 85 (2000)Google Scholar
  18. 18.
    O. Madelung, Grundlagen der Halbleiterphysik (Springer-Verlag, New York, 1970)Google Scholar
  19. 19.
    W. Prost, K. Blekker, Q.-T. Do, I. Regolin, F.-J. Tegude, S. Müller, D. Stichtenoth, K. Wegener, C. Ronning, Modeling the carrier mobility in nanowire channel FET. Mater. Res. Soc. Symp. MRS Proc. 1017-DD14-06 (2007). doi: 10.1557/PROC-1017-DD14-06
  20. 20.
    Z.-A. Li, C. Möller, V. Migunov, M. Spasova, M. Farle, A. Lysov, C. Gutsche, I. Regolin, W. Prost, F.-J. Tegude, P. Ercius, Planar-defect characteristics and cross-sections of <001>, <111>, and <112> InAs nanowires. J. Appl. Phys. 109, 114320 (2011)Google Scholar
  21. 21.
    K.A. Dick, K. Deppert, L. Samuelson, W. Seifert, Optimization of Au-assisted InAs nanowires grown by MOVPE. J. Cryst. Growth 297, 326–333 (2006)Google Scholar
  22. 22.
    S.A. Dayeh, Electron transport in indium arsenide nanowires. Sem. Sci. Technol. 25 024004 (2010)Google Scholar
  23. 23.
    P. Paiano, P. Prete, N. Lovergine, A.M. Mancini, Size and shape control of GaAs nanowires grown by metalorganic vapor phase epitaxy using tertiarybutylarsine. J. Appl. Phys. 100, 094305 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, F.J. Tegude, Controllable p- type doping of GaAs nanowires during vapor-liquid-solid growth. J. Appl. Phys. 105(2), 024305 (2009)Google Scholar
  25. 25.
    I. Regolin, C. Gutsche, A. Lysov, K. Blekker, Z.-A. Li, M. Spasova, W. Prost, F.-J. Tegude, Axial pn-Junctions formed by MOVPE using DEZn and TESn in vapour-liquid-solid grown GaAs nanowires. J. Cryst. Growth 315, 143–147 (2011)Google Scholar
  26. 26.
    Q.-T. Do, K. Blekker, I. Regolin, W. Prost, F.J. Tegude, High transconductance FET with a single InAs nanowhisker channel". IEEE Electron Dev. Lett. 28(8), 682 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, F.-J. Tegude, n-type doping of vapor-liquid-solid grown GaAs nanowires. Nano Res. Lett. 6, 65 (2011)Google Scholar
  28. 28.
    H. Okamoto, T.B. Massalski, in Phase Diagram of Binary Gold Alloys (ASM International, Metals Park, OH, 1987), pp. 278–289HGoogle Scholar
  29. 29.
    S. Leu, H. Protzmann, F. Höhnsdorf, W. Stolz, J. Steinkirchner, E. Hufgard, Si-doping of MOVPE grown InP and GaAs by using the liquid Si source ditertiarybutyl silane. J. Cryst. Growth 195, 91–97 (1998)Google Scholar
  30. 30.
    B. Lee, S.S. Bose, M.H. Kim, A.D. Reed, G.E. Stillman, W.I. Wang, L. Vina, P.C. Colter, Orientation dependent amphoteric behavior of group IV impurities in the molecular beam epitaxial and vapor phase epitaxial growth of GaAs. J. Cryst. Growth 96, 27–39 (1989)Google Scholar
  31. 31.
    N. Ghaderi, M. Peressi, N. Binggeli, H. Akbarzadeh, Structural properties and energetics of intrinsic and Si-doped GaAs nanowires: First-principles pseudopotential calculations. Phys. Rev. B 81, 155311 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    C.-Y. Chai, J.-A. Huang, Y.-L. Lai, J.-W. Wu, C.-Y. Chang, Y.-J. Chan, H.-C. Cheng, Excellent Au/Ge/Pd Ohmic Contacts to n-type GaAs Using Mo/Ti as the Diffusion Barrier. Jpn. J. Appl. Phys. 35, 2110–2111 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000)Google Scholar
  34. 34.
    K. Blekker, B. Münstermann, I. Regolin, A. Lysov, W. Prost, F.J. Tegude, in textitInAs Nanowire Transistors with GHz Capability Fabricated Using Electric Field Assisted Self-Assembly, 8th Topical Workshop on Heterostructure Microelectronics, Nagano, Japan, 26–28 Aug 2009Google Scholar
  35. 35.
    L.-E. Wernersson, C. Thelander, E. Lind, L. Samuelson, III-V nanowires-extending a narrowing road. Proc. IEEE 98(12), 2047–2060 (2010)Google Scholar
  36. 36.
    W. Lu, P. Xie, C.M. Lieber, Nanowire transistor performance limits and applications. IEEE Trans. Electron Dev. 55(1), 2859–2876 (2008)Google Scholar
  37. 37.
    S.E. Thompson, R.S. Chau, T. Ghani, K. Mistry, S. Tyagi, M.T. Bohr, In search of "Forever" continued transistor scaling one new material at a time. IEEE Trans. Electron Dev. 18(1), 26–36 (2005)Google Scholar
  38. 38.
    C. Rehnstedt, T. Martensson, C. Thelander, L. Samuelson, L.E. Wernersson, Vertical InAs nanowire wrap gate transistors on Si substrates. IEEE Trans. Electron Dev. 55(11), 3037–3041 (2008)Google Scholar
  39. 39.
    C. Thelander, C. Rehnstedt, L.E. Froberg, E. Lind, T. Martensson, P. Caroff, T. Lowgren, B.J. Ohlsson, L. Samuelson, L.E. Wernersson, Development of a vertical wrap-gated InAs FET. IEEE Trans. Electron Dev. 55(11), 3030–3036 (2008)Google Scholar
  40. 40.
    F.-J. Tegude W. Prost, III/V semiconductor nanowire transistors, Advances in III/V Semiconductor Nanowires and Devices, chap. 7, ed. J. Li, D. Wang, and R. R. LaPierre, Bentham Science Publ. 2011Google Scholar
  41. 41.
    C. Soci, X.-Y. Bao D.P.R. Aplin, D. Wang, A systematic study on the growth of GaAs nanowires by metal–organic chemical vapor deposition. Nano Lett. 8(12), 4275–4282 (2008)Google Scholar
  42. 42.
    S.A. Fortuna, X. L. Li, GaAs MESFET with a high-mobility self-assembled planar nanowire channel. IEEE Electron Dev. Lett. 30(6), 593 (2009)Google Scholar
  43. 43.
    S. Vandenbrouck, K. Madjour, D. Théron, Y. Dong, Y. Li, C.M. Lieber, C. Gaquiere, 12 GHz F\(_MAX\) GaN/AlN/AlGaN Nanowire MISFET. IEEE Electron Dev. Lett. 30(4), 322 (2009)Google Scholar
  44. 44.
    J. Noborisaka, T. Sato, J. Motohisa, S. Hara, K. Tomioka, T. Fukui, Electrical characterizations of InGaAs nanowire-top-gate field-effect transistors by selective-area metal organic vapor phase epitaxy Jpn. J. Appl. Phys. 46(11), 7562–7568 (2007)CrossRefGoogle Scholar
  45. 45.
    M. Choe, G. Jo, J. Maeng, W.K. Hong, M. Jo, G. Wang, W. Park, B.H. Lee, H. Hwang, T. Lee, Electrical properties of ZnO nanowire field effect transistors with varying high-k Al2O3 dielectric thickness. J Appl. Phys. 107(3), 034504 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    A. Wiersch, C. Heedt, S. Schneiders, R. Tilders, F. Buchali, W. Kuebart, W. Prost, F.J. Tegude, Room-temperature deposition of SiNx using ECR-PECVD for III/V semiconductor microelectronics in lift-off technique. J. Non-Cryst. Solids 187 334 (1995)Google Scholar
  47. 47.
    Q.T. Do, K. Blekker, I. Regolin, E. Schuster, R. Peters, W. Prost, F.-J. Tegude, Magnesium oxide (MgO) as gate dielectric for n-doped single InAs nanowire field-effect transistor, 7th Topical Workshop on Heterostructure Microelectronics (Japan, Aug, 2007)Google Scholar
  48. 48.
    J. Chaste, L. Lechner, P. Morfin, G. Fève, T. Kontos, J.M. Berroir, D.C. Glattli, H. Happy, P. Hakonen, B. Placais, Single carbon nanotube transistor at GHz frequency. Nano Lett. 8(2), 525–528 (2008)Google Scholar
  49. 49.
    K. Blekker, B. Münstermann, A. Matiss, Q.T. Do, I. Regolin, W. Brockerhoff, W. Prost, F.J. Tegude, High frequency measurements on InAs nanowire field-effect transistors using coplanar waveguide contacts. IEEE Trans. Nanotechnol. 9(4), 432–437 (2009)Google Scholar
  50. 50.
    Y. Otsuhata, T. Waho, K. Blekker, W. Prost, F.-J. Tegude, On the temporal behavior of DC and rf characteristics, of InAs nanowire MISFET (Int. Semiconductor Device Research Symposium, College Park, MD, USA, December, 2009), pp. 9–11Google Scholar
  51. 51.
    M.T. Borgström, E. Norberg, P. Wickert, H.A. Nilsson, J. Trägardh, K.A. Dick, G. Statkute, P. Ramvall, K. Deppert, L. Samuelson, Precursor evaluation for in situ InP nanowire doping. Nanotechnology 19(44), 445602 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    A. Lysov, M. Offer, C. Gutsche, I. Regolin, S. Topaloglu, M. Geller, W. Prost, F.-J. Tegude, Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures. Nanotechnology 22, 085702 (2011)Google Scholar
  53. 53.
    J.I. Pankove, Optical Processes in Semiconductors (Dover Publications, Inc., New York, 1971)Google Scholar
  54. 54.
    H.C. Casey, D.J. Silversmith, Radiative tunneling in GaAs abrupt asymmetrical junctions. J. Appl. Phys. 40(1), 241–256 (1969)Google Scholar
  55. 55.
    A. Lysov, S. Vinaji, M. Offer, C. Gutsche, I. Regolin, W. Mertin, W. Prost, G. Bacher, F.-J. Tegude, Spatially resolved photoelectric performance of axial GaAs nanowire pn-Diodes. Nano Res. 4(10), 987–995 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christoph Gutsche
    • 1
  • Ingo Regolin
    • 1
  • Andrey Lysov
    • 1
  • Kai Blekker
    • 1
  • Quoc-Thai Do
    • 1
    • 2
  • Werner Prost
    • 1
  • Franz-Josef Tegude
    • 1
  1. 1.Faculty of Engineering, Solid-State Electronics DepartmentUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Wacker SiltronicBurghausenGermany

Personalised recommendations