Intrinsic Magnetism and Collective Magnetic Properties of Size-Selected Nanoparticles

  • C. Antoniak
  • N. Friedenberger
  • A. Trunova
  • R. Meckenstock
  • F. Kronast
  • K. Fauth
  • M. Farle
  • H. Wende
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Using size-selected spherical FePt nanoparticles and cubic Fe/Fe-oxide nanoparticles as examples, we discuss the recent progress in the determination of static and dynamic properties of nanomagnets. Synchroton radiation-based characterisation techniques in combination with detailed structural, chemical and morphological investigations by transmission and scanning electron microscopy allow the quantitative correlation between element-specific magnetic response and spin structure on the one hand and shape, crystal and electronic structure of the particles on the other hand. Examples of measurements of element-specific hysteresis loops of single 18 nm sized nanocubes are discussed. Magnetic anisotropy of superparamagnetic ensembles and their dynamic magnetic response are investigated by ferromagnetic resonance as a function of temperature at different microwave frequencies. Such investigations allow the determination of the magnetic relaxation and the extraction of the average magnetic anisotropy energy density of the individual particles.

References

  1. 1.
    J.L. Dorman, D. Fiorani, E. Tronc, Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283 (1997)CrossRefGoogle Scholar
  2. 2.
    C.K. Kim, D, Kan, T, Veres, F. Normadin, J.K. Liao, H.H. Kim, S.-H. Lee, M. Zahn, M. Muhammed, Monodispersed FePt nanoparticles for biomedical applications. J. Appl. Phys. 97, 10Q918 (2005).Google Scholar
  3. 3.
    O.A. Ivanov, L.V. Solina, V.A. Demshina, L.M. Magat, Determination of the anisotropy constant and saturation magnetization, and magnetic properties of powders of an iron-platinum alloy. Phys. Met. Metall. 35, 81 (1973)Google Scholar
  4. 4.
    M.R. Visokay, R. Sinclair, Direct formation of ordered CoPt and FePt compound thin films by sputtering. Appl. Phys. Lett. 66, 1692 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    J.-U. Thiele, L. Folks, M.F. Toney, D. Weller, Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial FePt (001) L1\(_0\) films. J. Appl. Phys. 84, 5686 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    T. Shima, K. Takanashi, Y.K. Takahashi, K. Hono, Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films. Appl. Phys. Lett. 80, 2571 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, P. Fejes, Superlattices of iron nanocubes from Fe[N(SiME\(_3\))\(_2\)]\(_2\). Science 303, 821 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    O. Margeat, F. Dumestre, C. Amiens, B. Chaudret, P. Lecante, M. Respaud, Synthesis of iron nanoparticles: size effects, shape control and organisation. Prog. Solid. State Chem. 33, 71 (2005)CrossRefGoogle Scholar
  9. 9.
    C. Frandsen et al., Interparticle interactions in composites of nanoparticles of ferrimagnetic \(\gamma \)-Fe\(_2\)O\(_3\) and antiferromagnetic (CoO, NiO) materials. Phys. Rev. B 70, 134416 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    D.V. Berkov, Density of energy barriers in fine magnetic particle systems. IEEE Trans. Magn. 38, 2637–2639 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    C. Thirion, W. Wernsdorfer, D. Mailly, Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nat. Mater. 2, 524–527 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    I. Rod, O. Kazakova, D.C. Cox, M. Spasova, M. Farle, The route to single magnetic particle detection: a carbon nanotube decorated with a finite number of nanocubes. Nanotechnology 20, 335301 (2009)CrossRefGoogle Scholar
  13. 13.
    L.T. Kuhn et al., Magnetisation of isolated single crystalline Fe-nanoparticles measured by a ballistic Hall micro-magnetometer. Europ. Phys. J. D 10, 259–263 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    T. Uhlig, J. Zweck, Recording of single-particle hysteresis loops with differential phase contrast microscopy. Ultramicroscopy 99, 137–142 (2004)CrossRefGoogle Scholar
  15. 15.
    E. Snoeck et al., Magnetic configurations of 30 nm iron nanocubes studied by electron holography. Nano Lett. 8, 4293–4298 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    P. Schattschneider et al., Detection of magnetic circular dichroism on the two-nanometer scale. Phys. Rev. B 78, 104413 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    P. Schattschneider et al., Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486–488 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    H.A. Dürr et al., A closer look into magnetism: opportunities with synchrotron radiation. IEEE Trans. Magn. 45, 15–57 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    S. Eisebitt et al., Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    E. Amaladass, B. Ludescher, G. Schütz, T. Tyliszczak, T. Eimüller, Size dependence in the magnetization reversal of Fe/Gd multilayers on self-assembled arrays of nanospheres. Appl. Phys. Lett. 91, 172514 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    P. Fischer et al., Element-specific imaging of magnetic domains at 25 nm spatial resolution using soft x-ray microscopy. Rev. Sci. Instrum. 72, 2322–2324 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    M.-Y. Im et al., Direct real-space observation of stochastic behavior in domain nucleation process on a nanoscale. Adv. Mater. 20, 1750–1754 (2008)CrossRefGoogle Scholar
  23. 23.
    D.Y. Kim, Magnetic soft x-ray microscopy at 15 nm resolution probing nanoscale local magnetic hysteresis. J. Appl. Phys. 99, 08H303 (2006).Google Scholar
  24. 24.
    A. Fraile Rodríguez, F. Nolting, J. Bansmann, A. Kleibert, L.J. Heyderman, X-ray imaging and spectroscopy of individual cobalt nanoparticles using photoemission electron microscopy. J. Magn. Magn. Mater. 316, 426–428 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    J. Bansmann et al., Magnetism of 3d transition metal nanoparticles on surfaces probed with synchrotron radiation–from ensembles towards individual objects. Phys. Stat. Sol. B 247, 1152–1160 (2010)Google Scholar
  26. 26.
    A. Fraile Rodríguez et al., Size-dependent spin structures in iron nanoparticles. Phys. Rev. Lett. 104, 127201 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    G. Cheng, J.D. Carter, T. Guo, Investigation of Co nanoparticles with EXAFS and XANES. Chem. Phys. Lett. 400, 122–127 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    J. Rockenberger, L. Trger, A. Kornowski, T. Vossmeyer, A. Eychmüller, J. Feldhaus, H.J. Weller, EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles. Phys. Chem. B 101, 2691–2701 (1997)CrossRefGoogle Scholar
  29. 29.
    M.A. Marcus, L.E. Brus, C. Murray, M.G. Bawendi, A. Prasad, A.P. Alivisatos, EXAFS studies of cadmium chalcogenide nanocrystals. Nanostruct. Mater. 1, 323–335 (1992)CrossRefGoogle Scholar
  30. 30.
    S. Davis, A. Chadwick, J.J. Wright, A combined EXAFS and diffraction study of pure and doped nanocrystalline tin oxide. Phys. Chem. B 101, 9901–9908 (1997)CrossRefGoogle Scholar
  31. 31.
    D. Zanchet, H. Tolentino, M.C. Alves, O.L. Alves, D. Ugarte, Inter-atomic distance contraction in thiol-passivated gold nanoparticles. Chem. Phys. Lett. 323, 167–172 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    M, Dubiel, J. Haug, H. Kruth, H. Hofmeister, W. Seifert, Temperature dependence of EXAFS cumulants of Ag nanoparticles in glass. J. Phys. Conf. Ser. 190, 012123-1–012123-6 (2009)Google Scholar
  33. 33.
    R.A. Andersen, K. Faegri, J.C. Green, A. Haaland, W.-P. Leung, K. Rypdal, Synthesis of bis[bis(trimethylsilyl)amido]iron(II). Structure and bonding in M[N(SiMe\(_3\))\(_2\)]\(_2\) (M = manganese, iron, cobalt): two-coordinate transition-metal amides. Inorg. Chem. 27, 1782–1786 (1988)CrossRefGoogle Scholar
  34. 34.
    A.V. Trunova, R. Meckenstock, I. Barsukov, C. Hassel, O. Margeat, M. Spasova, J. Lindner, M. Farle, Magnetic characterization of iron nanocubes. J. Appl. Phys. 104, 093904-1–093904-5 (2008)Google Scholar
  35. 35.
    K. Fauth, E. Goering, G. Schütz, L.T. Kuhn, Probing composition and interfacial interaction in oxide passivated core-shell iron nanoparticles by combining x-ray absorption and magnetic circular dichroism. J. Appl. Phys. 96, 399 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    A. Shavel, B. Rodríguez-González, M. Spasova, M. Farle, L.M. Liz-Marzán, Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv. Funct. Mat. 17, 3870–3876 (2007)CrossRefGoogle Scholar
  37. 37.
    S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    R.M. Wang, O. Dmitrieva, M. Farle, G. Dumpich, H.Q. Ye, H. Poppa, R. Kilaas, C. Kisielowski, Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 100, 017205-1–017205-4 (2008)Google Scholar
  39. 39.
    C. Antoniak, M. Farle, Magnetism at the nanoscale: the case of FePt. Mod. Phys. Lett. B 21, 1111–1131 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    H.-G. Boyen, K. Fauth, B. Stahl, P. Ziemann, G. Kästle, F. Weigl, F. Banhart, M. Heßler, G. Schütz, N.S. Gajbhije, J. Ellrich, H. Hahn, M. Büttner, M.G. Garnier, P. Oelhafen, Electronic and magnetic properties of ligand-free FePt nanoparticles. Adv. Mater. 17, 574–578 (2005)CrossRefGoogle Scholar
  41. 41.
    U. Wiedwald, K. Fauth, M. Heßler, H.-G. Boyen, F. Weigl, M. Hilgendorff, M. Giersig, G. Schütz, P. Ziemann, M. Farle, From colloidal Co/CoO core/shell nanoparticles to arrays of metallic nanomagnets: surface modification and magnetic properties. Chem. Phys. Chem. 6, 2522–2526 (2005)CrossRefGoogle Scholar
  42. 42.
    C. Antoniak, A. Trunova, M. Spasova, M. Farle, H. Wende, F. Wilhelm, A. Rogalev, Lattice expansion in nonoxidized FePt nanoparticles: an x-ray absorption study. Phys. Rev. B 78, 041406(R)-1–041406(R)-4 (2008)Google Scholar
  43. 43.
    A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Multiple-scattering calculations of x-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    C. Antoniak, M. Spasova, A. Trunova, K. Fauth, F. Wilhelm, A. Rogalev, J. Minár, H. Ebert, M. Farle, H. Wande, Inhomogeneous alloying in FePt nanoparticles as a reason for reduced magnetic moments. J. Phys. Cond. Mat. 21, 336002 (2009)CrossRefGoogle Scholar
  46. 46.
    C. Antoniak, A. Warland, M. Darbandi, M. Spasova, A. Trunova, K. Fauth, E.F. Aziz, M. Farle, H. Wende, X-ray absorption measurements on nanoparticles: self-assembled arrays and dispersions. J. Phys. D Appl. Phys. 43, 474007 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    A. Grossmann, J. Morlet, Decomposition of Hardy functions into square-integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723–736 (1984)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    X. Shao, L. Shao, G. Zhao, Extraction of x-ray absorption fine structure information from the experimental data using the wavelet transform. Analyt. Commun. 35, 135–137 (1998)MathSciNetCrossRefGoogle Scholar
  49. 49.
    K. Yamaguchi, Y. Ito, T. Mukoyama, M. Takahashi, S.J. Emura, The regularization of the basic x-ray absorption spectrum fine structure equation via the wavelet-Galerkin method. Phys. B At. Mol. Opt. Phys. 32, 1393–1408 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    M. Muñoz, P. Argoul, F. Farges, Continuous Cauchy wavelet transform analyses of EXAFS spectra: a qualitative approach. Am. Mineralog. 88, 694–700 (2003)Google Scholar
  51. 51.
    H. Funke, H.C. Scheinost, M. Chukalina, Wavelet analysis of extended x-ray absorption fine strucure data. Phys. Rev. B 71, 094110 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    C. Antoniak, Extended x-ray absorption fine structure of bimetallic nanoparticles. Beilstein J. Nanotechol. 2, 237–251 (2011)CrossRefGoogle Scholar
  53. 53.
    B.T. Thole, P. Carra, F. Sette, G. van der Laan, X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–1946 (1992)ADSCrossRefGoogle Scholar
  54. 54.
    P. Carra, B.T. Thole, M. Altarelli, X. Wang, X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694–697 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    C.T. Chen, Y.U. Idzerda, H.-J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, F. Sette, Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    C. Ederer, M. Komelj, Magnetism in systems with various dimensionalities: a comparison between Fe and Co. Phys. Rev. B 68, 052402-1–052402-4 (2003)Google Scholar
  57. 57.
    R. Nakajima, J. Stöhr, Y.U. Idzerda, Electron-yield saturation effects in L-edge x-ray magnetic circular dichroism spectra of Fe, Co. and Ni. Phys. Rev. B 59, 6421–6429 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    K. Fauth, How well does total electron yield measure x-ray absorption in nanoparticles? Appl. Phys. Lett. 85, 3271–3273 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    H. Ebert et al., The Munich SPR-KKR package, version 3.6; http://olymp.cup.unimuenchen.de/ak/ebert/SPRKKR; H. Ebert, Fully relativistic band structure calculations for magnetic solids formalism and application in electronic structure and physical properties of solids, ed. by H. Dreyssé, Lecture Notes in Physics, vol. 535, p. 191 (2000)
  60. 60.
    C. Antoniak, J. Lindner, K. Fauth, J.-U. Thiele, J. Minár, S. Mankovsky, H. Ebert, H. Wende, M. Farle, Composition dependence of exchange stiffness in Fe\(_x\)Pt\(_{1-x}\) alloys. Phys. Rev. B 82, 064403-1–064403-6 (2010)Google Scholar
  61. 61.
    H. Landolt, R. Börnstein, Numerical data and Functional Relationships in Science and Technology, New Series III/19a, (Springer, Berlin, 1986) and references thereinGoogle Scholar
  62. 62.
    C. Antoniak, J. Lindner, M. Spasova, D. Sudfeld, M. Acet, M. Farle, K. Fauth, U. Wiedwald, H.-G. Boyen, P. Ziemann, F. Wilhelm, A. Rogalev, S. Sun, Enhanced orbital magnetism in Fe\(_{50}\)Pt\(_{50}\) nanoparticles. Phys. Rev. Lett. 97, 117201 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    E. Goering, A. Fuss, W. Weber, J. Will, G. Schütz, Element specific x-ray magnetic circular dichroism magnetization curves using total electron yield. J. Appl. Phys. 88, 5920 (2000)ADSCrossRefGoogle Scholar
  64. 64.
    M.P. Sharrock, Time dependence of switching fields in magnetic recording media. J. Appl. Phys. 76, 6413 (1994)ADSCrossRefGoogle Scholar
  65. 65.
    O. Dmitrieva et al., Magnetic moment of Fe in oxide-free FePt nanoparticles. Phys. Rev. B 76, 064414-1–064414-7 (2007)Google Scholar
  66. 66.
    C. Antoniak et al., A guideline for atomistic design and understanding of ultrahard nanomagnets, Nature Commun. 2, 528 (2011)Google Scholar
  67. 67.
    M.E. Gruner, G. Rollmann, P. Entel, M. Farle, Multiply twinned morphologies of FePt and CoPt nanoparticles. Phys. Rev. Lett. 100, 087203-1–087203-4 (2008)Google Scholar
  68. 68.
    J.B. Staunton, S. Ostanin, S.S.A. Razee., B.L. Gyorffy, L. Szunyogh, B. Ginatempo, E. Bruno, Temperature dependent magnetic anisotropy in metallic magnets from an Ab initio electronic structure theory: L1\(_0\)-ordered FePt. Phys. Rev. Lett. 93, 257204-1–257204-4 (2004)Google Scholar
  69. 69.
    C. Antoniak, J. Lindner, M. Farle, Magnetic anisotropy and its temperature dependence in iron-rich Fe\(_x\)Pt\(_{1-x}\) nanoparticles. Europhys. Lett. 70, 250–256 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    O. Mryasov, U. Nowak, K.Y. Guslienko, R.W. Chantrell, Temperature-dependent properties of FePt: effective spin Hamiltonian model. Europhys. Lett. 69, 805–811 (2005)ADSCrossRefGoogle Scholar
  71. 71.
    E. Stavitski, F.M.F. de Groot, The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41, 687 (2010)Google Scholar
  72. 72.
    R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981), p. 307Google Scholar
  73. 73.
    F.M.F. de Groot, A. Kotani, Core Level Spectroscopy of Solids (Taylor& Francis, New York, 2008)CrossRefGoogle Scholar
  74. 74.
    F.M.F. de Groot, X-ray absorption and dichroism of transition metals and their compounds. J. Electron Spectrosc. Relat. Phenom. 61, 529 (1994)CrossRefGoogle Scholar
  75. 75.
    P. Kuiper, B.G. Searle, L.-C. Duda, R.M. Wolf, P.J. van der Zaag, Fe L\(_{2,3}\) linear and circular magnetic dichroism of Fe\(_3\)O\(_4\). J. Electron Spectrosc. Relat. Phenom. 86, 107 (1997)CrossRefGoogle Scholar
  76. 76.
    T. Fujii, F.M.F. de Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma, K. Okada, In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195–3202 (1999)ADSCrossRefGoogle Scholar
  77. 77.
    W.E. Henry, M.J. Boem, Intradomain magnetic saturation and magnetic structure of y-Fe203. Phys. Rev. 101, 1253 (1956)ADSCrossRefGoogle Scholar
  78. 78.
    F. Kronast, N. Friedenberger, K. Ollefs, S. Gliga, L. Tati-Bismaths, R. Thies, A. Ney, R. Weber, C. Hassel, F.M. Römer, A.V. Trunova, C. Wirtz, R. Hertel, H.A. Dürr, M. Farle, Element-specific magnetic hysteresis of individual 18 nm Fe nanocubes. Nano Lett 11, 1710–1715 (2011)ADSCrossRefGoogle Scholar
  79. 79.
    Object oriented micromagnetic framework, http://www.math.nist.gov/oommf
  80. 80.
    N. Friedenberger, C. Möller, C. Hassel, S. Stienen, F. Kronast, M. Farle, Single Nanoparticle Magnetism: Influence of morphology, to be published (2012)Google Scholar
  81. 81.
    N. Friedenberger, Ph.D. Thesis, Universität Duisburg-Essen, in preparation (2011)Google Scholar
  82. 82.
    W.H. Meiklejohn, C.P. Bean, New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956)Google Scholar
  83. 83.
    J. Nogués et al., Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    X. Batlle, Magnetic nanoparticles with bilklike properties (invited). J. Appl. Phys 109, 07B524-1–07B524-6 (2011)Google Scholar
  85. 85.
    R. Fink, SMART: a planned ultrahigh-resolution spectromicroscope for Bessy II. J. Electr. Spectr. Rel. Phen. 84, 231 (1997)CrossRefGoogle Scholar
  86. 86.
    M. Farle, Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61, 755–826 (1998)ADSCrossRefGoogle Scholar
  87. 87.
    A. Banholzer, R. Narkowicz, C. Hassel, R. Meckenstock, S. Stienen, O. Posth, D. Suter, M. Farle, J. Lindner, Visualization of spin dynamics in single nanosized magnetic elements. Nanotechnology 22, 295713 (2011)CrossRefGoogle Scholar
  88. 88.
    K. Baberschke, in Investigation of Ultrathin Ferromagnetic Films by Magnetic Resonance. Handbook of Magnetism and Advanced Magnetic Materials, vol. 3 (Wiley, New York, 2007), p. 1617 and references thereinGoogle Scholar
  89. 89.
    J. Lindner, C. Hassel, A.V. Trunova, F.M. Römer, S. Stienen, I. Barsukov, Magnetism of single-crystalline Fe nanostructures. J. Nanosc. Nanotechn. 10, 6161 (2010)CrossRefGoogle Scholar
  90. 90.
    M. Mizuguchi, K. Takanashi, Ferromagnetic resonance of epitaxial Fe nanodots grown on MgO measured using coplanar waveguides. J. Phys. D Appl. Phys. 44, 064007 (2011)ADSCrossRefGoogle Scholar
  91. 91.
    D, Bonneberg, H.A., Hempel, H.P.J. Wijn, Magnetic properties of 3d, 4d and 5d elements, alloay and compounds. in Landolt-Börnstein, New Series (Springer Berlin), vol. III/19a, ed. by K.-H. Hellwege, O. Madelung (1992), p. 178 and references thereinGoogle Scholar
  92. 92.
    B.K. Kuanr, R.E. Camley, Z. Celinski, Relexation in epitaxial Fe films measured by ferromagnetic resonance. J. Appl. Phys. 95, 6610–6613 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. Antoniak
    • 1
  • N. Friedenberger
    • 1
  • A. Trunova
    • 1
  • R. Meckenstock
    • 1
  • F. Kronast
    • 2
  • K. Fauth
    • 3
  • M. Farle
    • 1
  • H. Wende
    • 1
  1. 1.Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenDuisburgGermany
  2. 2.Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)BerlinGermany
  3. 3.Experimentelle Physik IVUniversität WürzburgWürzburgGermany

Personalised recommendations