Single Molecule Studies

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Single molecule detection (SMD) has become an important technique in recent years for studying dynamic processes such as chemical reactions and molecular motions at a fundamental level. Historically these processes are usually studied using methods based on ensemble averaging of a sample of molecules, however frequently the mean properties so found are insufficient. Studies on single molecules are thus advantageous as information, such as statistical distributions of particular quantities, is not lost by averaging. It should however be noted that even single molecule studies yield results that are temporally averaged over the course of the finite measurement time.

Keywords

Focal Plane Electric Dipole Single Molecule Extinction Ratio Phase Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Basché, W.P. Ambrose, W.E. Moerner, Optical spectra and kinetics of single impurity molecules in a polymer: spectral diffusion and persistent spectral hole burning. J. Opt. Soc. Am. B 9, 829–836 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    R.E. Dale, S.C. Hopkins, Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers. Biophys. J. 76, 1606–1618 (1999)CrossRefGoogle Scholar
  3. 3.
    P. Debye, Polar molecules. Ph.D. Thesis, Dover, New York, 1945Google Scholar
  4. 4.
    L.A. Deschenes, D.A. van den Bout, Single-molecule studies of heterogeneous dynamics in polymer melts near the glass transition. Science 292, 233, 255–258 (2001)Google Scholar
  5. 5.
    R.M. Dickson, D.J. Norris, W.E. Moerner, Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis. Phys. Rev. Lett. 81, 5322–5325 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    W. Feller, Probability Theory and its Applications (Addison-Wesley, New York, 1950)MATHGoogle Scholar
  7. 7.
    M.R. Foreman, C. Macías Romero, P. Török, Determination of the three dimensional orientation of single molecules. Opt. Lett. 33, 1020–1022 (2008)Google Scholar
  8. 8.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Elsevier Academic Press, New York, 1980)MATHGoogle Scholar
  9. 9.
    T. Ha, T. Enderle, D.S. Chemla, P.R. Selvin, S. Weiss, Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett. 77, 3979–3982 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    T. Ha, T. Enderle, D.F. Ogletree, D.S. Chemla, P.R. Selvin, S. Weiss, Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. U S A 93, 6264–6268 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    T. Ha, J. Glass, T. Enderle, D.S. Chemla, S. Weiss, Hindered rotational diffusion and rotational jumps of single molecules. Phys. Rev. Lett. 80, 2093–2096 (1998)ADSCrossRefGoogle Scholar
  12. 12.
  13. 13.
    K. Itô, Introduction to Probability Theory (Cambridge University Press, Cambridge, 1984)MATHGoogle Scholar
  14. 14.
    T.M. Jovin, M. Bartholdi, W.L.C. Vaz, R.H. Austin, Rotational diffusion of biological macromolecules by time-resolved delayed luminescence (phosphorescence, fluorescence) anisotropy. Ann. N Y Acad. Sci. 366, 176–196 (1981)Google Scholar
  15. 15.
    A. Leon-Garcia, Probability and Random Processes for Electrical Engineering (Addison-Wesley, New York, 1994)Google Scholar
  16. 16.
    H.P. Lu, L.Y. Xun, X.S. Xie, Single molecule enzymatic dynamics. Science 282, 1877–1882 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    W.E. Moerner, D.P. Fromm, Methods of single molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    I. Munro, I. Pecht, L. Stryer, Subnanosecond motions of Tryptophan residues in proteins. Proc. Natl. Acad. Sci. U S A 76, 56–60 (1979)ADSCrossRefGoogle Scholar
  19. 19.
    D. Patra, I. Gregor, J. Enderlein, Image analysis of defocused single molecule images for three dimensional molecular orientation studies. J. Phys. Chem. A 108, 6836 (2004)CrossRefGoogle Scholar
  20. 20.
    G.H. Patterson, S.N. Knobel, W.D. Sharif, S.R. Kain, D.W. Piston, Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997)CrossRefGoogle Scholar
  21. 21.
    D.J. Pikas, S.M. Kirkpatrick, E. Tewksbury, L.L. Brott, R.R. Naik, M.O. Stone, W.M. Dennis, Nonlinear saturation and lasing characteristics of green fluorescent protein. J. Phys. Chem. B 106, 4831–4837 (2002)CrossRefGoogle Scholar
  22. 22.
    B. Sick, B. Hecht, L. Novotny, Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482–4485 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    P. Török, Propagation of electromagnetic dipole waves through dielectric interfaces. Opt. Lett. 25, 1463–1465 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    P. Török, P.D. Higdon, T. Wilson, On the general properties of polarised light conventional and confocal microscopes. Opt. Commun. 148, 300–315 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    P. Török, P.D. Higdon, T. Wilson, Theory for confocal and conventional microscopes imaging small dielectric scatterers. Opt. Commun. 45, 1681–1698 (1998)Google Scholar
  26. 26.
    H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Dover, 1981)Google Scholar
  27. 27.
    P. Wahl, K. Tawada, J.C. Auchet, Study of tropomyosin labelled with a fluorescent probe by pulse fluorimetry in polarized light—interaction of that protein with troponin and actin. Eur. J. Biochem. 88, 421–424 (1978)CrossRefGoogle Scholar
  28. 28.
    D.M. Warshaw, E. Hayes, D. Gaffney, A.M. Lauzon, J.R. Wu, G. Kennedy, K. Trybus, S. Lowey, C. Berger, Myosin conformational states determined by single fluorophore polarization. Proc. Natl. Acad. Sci. U S A 95, 8034–8039 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    S. Weiss, Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat. Struct. Biol. 7, 724 (2000)CrossRefGoogle Scholar
  30. 30.
    K.D. Weston, L.S. Goldner, Orientation imaging and reorientation dynamics of single dye molecules. J. Phys. Chem. B 105, 3453–3462 (2001)CrossRefGoogle Scholar
  31. 31.
    J. Yguerabide, H.F. Epstein, L. Stryer, Segmental flexibility in an antibody molecule. J. Mol. Biol. 51, 573–590 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations