Information in Polarisation Imaging

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Information in both the natural and man-made world is frequently not spatially confined to a single point. Whilst, for example, studying the autofluorescence from a single molecule in a cell provides information with regards to that molecule, nothing is learnt about the processes and structure in the whole cell. To do so requires information to be collected from multiple locations. Such is the reason for the prevalence and success of imaging systems. In an optical context, a CCD can be used to record the intensity incident upon each pixel for instance. If located in the image plane of an optical microscope or telescope, information with regards to the object can then be extracted from the intensity readings.

Keywords

Focal Plane Field Distribution Field Component Fisher Information Focal Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.P. Agrawal, D.N. Pattanayak, Gaussian beam propagation beyond the paraxial approximation. J. Opt. Soc. Am. 69, 575–578 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    G. Arfken, Mathematical Methods for Physicists, 3rd edn. (Elsevier Academic Press, New York, 1985)Google Scholar
  3. 3.
    Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 27, 285–287 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1980)Google Scholar
  5. 5.
    J.J.M. Braat, P. Dirksen, A.J.E.M. Janssen, A.S. van de Nes, Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system. J. Opt. Soc. Am. A 20, 2281–2292 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    U. Brand, G. Hester, J. Grochmalicki, R. Pike, Super-resolution in optical data storage. J. Opt. A Pure Appl. Opt. 1, 794–800 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    M. Brookes, The matrix reference manual (2005). http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html
  8. 8.
    D.R. Chowdhury, K. Bhattacharya, S. Sanyal, A.K. Chakraborty, Performance of a polarization-masked lens aperture in the presence of spherical aberration. J. Opt. A Pure Appl. Opt. 4, 98–104 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    T. di Francia, Super-gain antennas and optical resolving power. Nuovo Cimento 9, 426–438 (1952)CrossRefGoogle Scholar
  10. 10.
    E.R. Dowski Jr., W.T. Cathey, Extended depth of field through wave-front coding. Appl. Opt. 34, 1859–1866 (1995)Google Scholar
  11. 11.
    M. Endo, Pattern formation method and exposure system. Patent 7,094,521, 2006Google Scholar
  12. 12.
    P.E. Falloon, Hybrid computation of the spheroidal harmonics and application to the generalized hydrogen molecular ion problem, Ph.D. thesis, 2001Google Scholar
  13. 13.
    P.B. Fellgett, E.H. Linfoot, On the assessment of optical images. Philos. Trans. R. Soc. Lond. A 247, 369–407 (1955)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    M.R. Foreman, S.S. Sherif, P.R.T. Munro, P. Török, Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region. Opt. Express 16, 4901–4917 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    B.R. Frieden, Evaluation, Design and Extrapolation Methods for Optical Signals, Based on the Prolate Functions. Progress in Optics IX (North-Holland Publishing Co., Amsterdam, 1971)Google Scholar
  16. 16.
    B.R. Frieden, Physics from Fisher Information: A Unification (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  17. 17.
    D. Gabor, A new microscopic principle. Nature (London) 161, 777–778 (1948)ADSCrossRefGoogle Scholar
  18. 18.
    J.D. Gorman, A.O. Hero, Lower bounds for parametric estimation with constraints. IEEE Trans. Inform. Theory 26, 1285–1301 (1990)MathSciNetCrossRefGoogle Scholar
  19. 19.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Elsevier Academic Press, New York, 1980)Google Scholar
  20. 20.
    T. Ha, T. Enderle, D.S. Chemla, P.R. Selvin, S. Weiss, Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett. 77, 3979–3982 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (SIAM, Philadelphia, 1997)MATHGoogle Scholar
  22. 22.
    Z.S. Hegedus, V. Sarafis, Superresolving filters in confocally scanned imaging systems. J. Opt. Soc. Am. A 3, 1892–1896 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    J.C. Heurtley, Hyperspheroidal functions-optical resonators with circular mirrors, inProceedings of Symposium on Quasi-Optics, ed. by J. Fox (Polytechnic Press, New York, 1964), pp.367–371Google Scholar
  24. 24.
    P.D. Higdon, P. Török, T. Wilson, Imaging properties of high aperture multiphoton fluorescence scanning microscopes. J. Micros. 193, 127–141 (1999)CrossRefGoogle Scholar
  25. 25.
    S. Inoué, Exploring Living Cells and Molecular Dynamics with Polarized Light Microscopy, 1st edn. In Török and Kao [57], 2007, ch. 1.Google Scholar
  26. 26.
    R. Kant, An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations. J. Mod. Opt. 40, 2293–2310 (1993)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    B. Karczewski, E. Wolf, Comparison of three theories of electromagnetic diffraction at an aperture. J. Opt. Soc. Am 56, 1207–1219 (1966)ADSCrossRefGoogle Scholar
  28. 28.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    D. Lara, C. Paterson, Stokes polarimeter optimization in the presence of shot and Gaussian noise. Opt. Express 17, 21240–21249 (2009)CrossRefGoogle Scholar
  30. 30.
    W. Latham, M. Tilton, Calculation of prolate functions for optical analysis. Appl. Opt. 26, 2653–2658 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    W.H. Lee, Computer-Generated Holograms: Techniques and Applications, Progress in Optics XVI. (North-Holland Publishing Co., Amsterdam, 1978)Google Scholar
  32. 32.
    C.W. McCutcheon, Generalised aperture and the three-dimensional diffraction image. J. Opt. Soc. Am. 54, 240–244 (1964)ADSCrossRefGoogle Scholar
  33. 33.
    P.R.T. Munro, Application of numerical methods to high numerical aperture imaging. Ph.D. thesis, 2006Google Scholar
  34. 34.
    Y. Mushiake, K. Matsumura, N. Nakajima, Generation of radially polarized optical beam mode by laser oscillation. Proc. IEEE 60, 1107–1109 (1972)CrossRefGoogle Scholar
  35. 35.
    M.A.A. Neil, F. Massoumian, R. \({\rm Ju{\breve{s}}kaitis}\), T.Wilson, Method for the generation of arbitrary complex vector wave fronts. Opt. Lett. 27, 1929–1931 (1990)Google Scholar
  36. 36.
    M.A.A. Neil, T. Wilson, R. \({\rm Ju{\breve{s}}kaitis}\), A wavefront generator for complex pupil function synthesis and point spread function engineering. J. Micros. 197, 219–223 (2000)Google Scholar
  37. 37.
    R.J. Ober, S. Ram, E.S. Ward, Localization accuracy in single-molecule microscopy. Biophys. J. 86(2), 1185–1200 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    J. Ojeda-Castañeda, L.R. Berriel-Valdos, E. Montes, Spatial filter for increasing the depth of focus. Opt. Lett. 10, 520–522 (1987)ADSCrossRefGoogle Scholar
  39. 39.
    R. Oldenbourg, A new view on polarization microscopy. Nature 381, 811–812 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    R. Oldenbourg, G. Mei, New polarized light microscope with precision universal compensator. J. Micros. 180, 140–147 (1995)CrossRefGoogle Scholar
  41. 41.
    R. Oldenbourg, P. Török, Point-spread functions of a polarizing microscope equipped with high-numerical-aperture lenses. Appl. Opt. 39, 6325–6331 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    R. Pike, D. Chana, P. Neocleous, S. Jiang, Superresolution in scanning optical systems, 1st edn. In Török and Kao [57], 2007, Ch. 4.Google Scholar
  43. 43.
    T.C. Poon, M. Motamedi, Optical/digital incoherent image processing for extended depth of field. Appl. Opt. 26, 4612–4615 (1987)ADSCrossRefGoogle Scholar
  44. 44.
    S. Ram, E.S. Ward, R.J. Ober, Beyond Rayleigh’s criterion: A resolution measure with application to single-molecule microscopy. Proc. Natl Acad. Sci. USA 103, 4457–4462 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    B. Richards, E. Wolf, Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Trans. Opt. Inst. Pet. 253, 358–379 (1959)MATHGoogle Scholar
  46. 46.
    A. Rohrbach, J. Huisken, E.H.K. Stelzer, Optical trapping of small particles, 1st edn. In Török and Kao [57], 2007, ch. 15.Google Scholar
  47. 47.
    C.J.R. Sheppard, A. Choudhury, Image formation in the scanning microscope. J. Mod. Opt. 24(10), 1051–1073 (1976)Google Scholar
  48. 48.
    C.J.R. Sheppard, P. Török, Efficient calculation of electromagnetic diffraction in optical systems using a multipole expansion. J. Mod. Opt. 44, 803–818 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    S.S. Sherif, W.T. Cathey, Depth of field control in incoherent hybrid imaging systems, 1st edn. In Török and Kao [57], 2007, ch. 5.Google Scholar
  50. 50.
    S.S. Sherif, M.R. Foreman, P. Török, Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system. Opt. Express 16, 3397–3407 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    S.S. Sherif, P. Török, Pupil plane masks for super-resolution in high-numerical-aperture focusing. J. Mod. Opt. 51, 2007–2019 (2004)ADSMATHGoogle Scholar
  52. 52.
    S.S. Sherif, P. Török, Eigenfunction representation of the integrals of the Debye-Wolf diffraction formula. J. Mod. Opt. 52, 857–876 (2005)ADSMATHCrossRefGoogle Scholar
  53. 53.
    B. Sick, B. Hecht, L. Novotny, Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482–4485 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    D. Slepian, Prolate spheroidal wave functions, Fourier analysis and uncertainty IV Extensions to many dimensions; generalised prolate spheroidal functions. Bell System Tech. J. 43, 3009–3057 (1964)MathSciNetMATHGoogle Scholar
  55. 55.
    S.C. Tidwell, D.H. Ford, W.D. Kimura, Generating radially polarized beams interferometrically. Appl. Opt. 29, 2234–2239 (1990)ADSCrossRefGoogle Scholar
  56. 56.
    P. Török, P.D. Higdon, T. Wilson, Theory for confocal and conventional microscopes imaging small dielectric scatterers. Opt. Commun. 45, 1681–1698 (1998)Google Scholar
  57. 57.
    P. Török, F.-J. Kao (eds.), Optical Imaging and Microscopy - Techniques and Advanced Systems, 1st edn. (Springer, New York, 2007)Google Scholar
  58. 58.
    P. Török, P. Varga, Electromagnetic diffraction of light focused through a stratified medium. Appl. Opt. 36, 2305–2312 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    K.C. Toussaint Jr., S. Park, J.E. Jureller, N.F. Scherer, Generation of optical vector beams with a diffractive optical element interferometer. Opt. Lett. 30, 2846–2848 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Dover, 1981)Google Scholar
  61. 61.
    A.S. van de Nes, Rigorous electromagnetic field calculations for advanced optical systems. Ph.D. Thesis, 2005Google Scholar
  62. 62.
    G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1995)MATHGoogle Scholar
  63. 63.
    W.T. Welford, Use of annular apertures to increase focal depth. J. Opt. Soc. Am. 50, 749–753 (1960)ADSCrossRefGoogle Scholar
  64. 64.
    W.T. Welford, On the relationship between the modes of image formation in scanning microscopy and conventional microscopy. J. Micros. 96, 105–107 (1972)CrossRefGoogle Scholar
  65. 65.
    T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984)Google Scholar
  66. 66.
    E. Wolf, Electromagnetic diffraction in optical systems I An integral representation of the image field. Proc. Roy. Soc. Lond. A 253, 349–357 (1959)ADSMATHCrossRefGoogle Scholar
  67. 67.
    K.S. Youngworth, T.G. Brown, Focusing of high numerical aperture cylindrical vector beams. Opt. Express 7, 77–87 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    S.-S. Yu, B.J. Lin, A. Yen, C.-M. Ke, J. Huang, B.-C. Ho, C.-K. Chen, T.-S. Gau, H.-C. Hsieh, Y.-C. Ku, Thin-film optimization strategy in high numerical aperture optical lithography I—Principles. J. Microlith. Microfab. Microsyst. 4, 043003 (2005)CrossRefGoogle Scholar
  69. 69.
    T. Zolezzi, Well-Posedness Criteria in Optimization with Application to the Calculus of Variations. Nonlinear Analysis: Theory, Methods and Applications, vol. 25 (Elsevier Science Ltd., Oxford, 1995), pp. 437–453Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations