Nano- and Biotechniques for Electronic Device Packaging

Chapter

Abstract

As stated in Chap. 1 packaging bridges the gap between miniaturized electronic and non-electrical function elements and components as well as to the environment in order to constitute systems with particular complex functions, that match the system to the environment given by the intended application and that secures and maintains the systems properties during entire life-time. It provides the structural scaffold and framework for the functional elements and components, it supplies electrical power, it provides the electrical connections to and between the elements and components within the system and other systems, it integrates sensor, information processing and actuator functions, it removes heat, it protects the system against mechanical, chemical, electromagnetic and other interfering factors required for reliability and it matches the system to the environment (Table 1.4). Conventional microelectronics and microsystems packaging uses classic semiconductor and microsystem technologies like thin-film technology, lithography-based patterning, bonding and wiring as well as traditional assembly processes (Table. 1.2).

Keywords

International Standard Organization Optical Lithography Functional Nanostructures Extreme Ultraviolet Lithography Actuator Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akdogan, E.K., Safari, A.: Thermodynamic theory of intrinsic finite-size effects in \({\rm PbT_{i}O_{3}}\) nanocrystals. I. Nanoparticle size-dependent tetragonal phase stability. J. Appl. Phys. 101, 064114 (2007)Google Scholar
  2. 2.
    Almahmoud, E., Kornev, I., Bellaiche, L.: Dependence of Curie temperature on the thickness of an ultrathin ferroelectric film. Phys. Rev. B Condens. Matter 81, 064105 (2010)Google Scholar
  3. 3.
    Ariga, K., Hill, J.P., Ji, Q.: Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 9, 2319–2340 (2007)Google Scholar
  4. 4.
    Arora, A., Padua, G.W.: Review: Nanocomposites in food packaging. J. Food Sci. 75(1), R43–R49 (2010)Google Scholar
  5. 5.
    Bae, E.J., Choi, W.B., Jeong, K.S., Chu, J.U., Park, G.S., Song, S., Yoo, I.K.: Selective growth of carbon nanotubes on pre-patterned porous anodic aluminum oxide. Adv. Mater. 14, 277 (2002)Google Scholar
  6. 6.
    Bai, C.: Scanning Tunneling Microscopy and its Applications. Springer, New York (2000)Google Scholar
  7. 7.
    Baker, D.: A surprising simplicity to protein folding. Nature 405, 39–42 (2000)Google Scholar
  8. 8.
    Bakunin, V.N., Suslov, A.Y., Kuzmina, G.N., Parenago, O.P., Topchiev, A.V.: Synthesis and application of inorganic nanoparticles as lubricant components—a review. J. Nanopart. Res. 6(2), 273–284 (2004)Google Scholar
  9. 9.
    Balzani, V., Credi, A., Raymo, F.M., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3349–3391 (2000)Google Scholar
  10. 10.
    Barke, I., Rügheimer, T.K., Zheng, F., Himpsel, F.J.: Atomically precise self-assembly of one-dimensional structures on silicon. Appl. Surf. Sci. 254, 4–11 (2007)Google Scholar
  11. 11.
    Becke, K.J., Fiedler, S., Bauer, J., Mollath, G., Schreck, G., Kolesnik, I., Reichl, H.: Contact-free component assembly—a new approach in microsystem packaging. In: Mikrosystemtechnik Kongress. VDE Verlag, Berlin (2007)Google Scholar
  12. 12.
    Bethune, D.S., Klang, C.H., De Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)Google Scholar
  13. 13.
    Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)Google Scholar
  14. 14.
    Binnig, G., Rohrer, H.: Scanning tunneling microscopy. IBM J. Res. Dev. 30, 4 (1986)Google Scholar
  15. 15.
    Blodgett, K.B., Langmuir, I.: Built-up films of barium stearate and their optical properties. Phys. Rev. 51(11), 964–982 (1937)Google Scholar
  16. 16.
    Bockrath, M., Cobden, D.H., McEuen, P.L., Chopra, N.G., Zettl, A., Thess, A., Smalley, R.E.: Single-electron transport in ropes of carbon nanotubes. Appl. Phys. Lett. 275(5308), 1922–1925 (1997)Google Scholar
  17. 17.
    Brandt, T., Hövel, M., Gompf, B., Dressel, M.: Temperature- and frequency-dependent optical properties of ultrathin Au films. Phys. Rev. B: Condens. Matter 78, 205409 (2008)Google Scholar
  18. 18.
    Bratton, D., Yang, D., Dai, J., Ober, C.K.: Recent progress in high resolution lithography. Polym. Adv. Technol. 17(2), 94–103 (2006)Google Scholar
  19. 19.
    Bryson, J.W., Betz, S.F., Lu, H.S., Suich, D.J., Zhou, H.X., O’Neil, K.T., DeGrado, W.F.: Protein design: A hierarchic approach. Science 270(5238), 935–941 (1995)Google Scholar
  20. 20.
    Bukowski, T.J., Simmons, J.H.: Quantum dot research: Current state and future prospects. Crit. Rev. Solid State Mater. Sci. 27(3–4), 119–142 (2002)Google Scholar
  21. 21.
    Burns, M.M., Fournier, J.M., Golovchenko, J.A.: Optical matter: crystallization and binding in intense optical fields. Science 249(5009), 749–754 (1990)Google Scholar
  22. 22.
    Castillo, J., Dimaki, M., Svendsen, W.E.: Manipulation of biological samples using micro and nano techniques. Integr. Biol. 1, 30–42 (2009)Google Scholar
  23. 23.
    Chapman, A.: England’s Leonardo: Robert Hooke (1635–1703) and the art of experiment in restoration England. Proceedings of the Royal Institution of Great Britain 67, 239–275 (1996)Google Scholar
  24. 24.
    Chen, J., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350(6319), 631–633 (1991)Google Scholar
  25. 25.
    Cheng, J.Y., Ross, C.A., Smith, H.I., Thomas, E.L.: Templated self-assembly of block copolymers: top–down helps bottom–up. Adv. Mater. 18, 2505–2521 (2006)Google Scholar
  26. 26.
    Choudalakis, G., Gotsis, A.D.: Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J. 45(4), 967–984 (2009)Google Scholar
  27. 27.
    Chung, S.E., Park, W., Shin, S., Lee, S.A., Kwon, S.: Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat. Mater. 7, 581–587 (2008)Google Scholar
  28. 28.
    Cleanrooms and associated controlled environments—part 6: Vocabulary. ISO 14644–6:2007 (2007)Google Scholar
  29. 29.
    Creighton, T.E.: Protein folding. Biochem. J. 270(1), 1–16 (1990)Google Scholar
  30. 30.
    Cuello, J.C.: Engineering to biology and biology to engineering. The bi-directional connection between engineering and biology in biological engineering design. Int. J. Eng. Educ. 21, 1–7 (2005)Google Scholar
  31. 31.
    Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)Google Scholar
  32. 32.
    Dekker, C.: Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007)Google Scholar
  33. 33.
    Demus, D., Goodby, J., Gray, G.W., Spiess, H.W. (eds.): Handbook of Liquid Crystals. Wiley-VCH, Weinheim (1998)Google Scholar
  34. 34.
    Desiraju, G.R.: Crystal Engineering: the Design of Organic Solids. Elsevier, New York (1989)Google Scholar
  35. 35.
    Di Pippo, A.G., Joseph, M.: Melting point depression. J. Chem. Educ. 42(5), A413 (1965)Google Scholar
  36. 36.
    Douglas, S.M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)Google Scholar
  37. 37.
    Drexler, K.E.: Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA 78, 5275–5278 (1981)Google Scholar
  38. 38.
    Drexler, K.E.: Engines of Creation: the Coming Era of Nanotechnology. Anchor Books 1986, New York (1986)Google Scholar
  39. 39.
    Drexler, K.E., Randall, J., Corchnoy, S., Kawczak, A., Steve, M.L.: Productive nanosystems. a technology roadmap. Technical report, Battelle Memorial Institute and Foresight Nanotech Institute (2007)Google Scholar
  40. 40.
    Dyson, P., Ransing, R., Williams, P.H., Williams, R.: Fluid Properties at Nano/Meso Scale: a Numerical Treatment. Wiley, Chichester (2008)Google Scholar
  41. 41.
    Endy, D.: Foundations for engineering biology. Nature 438, 449–453 (2005)Google Scholar
  42. 42.
    Fange, D., Elf, J.: Noise-induced Min phenotypes in E. coli. PLoS Comput. Biol. 2(6), 637–648 (2006)Google Scholar
  43. 43.
    Fendler, J.H.: Chemical self-assembly for electronic applications. Chem. Mater. 13(10), 3196–3210 (2001)Google Scholar
  44. 44.
    Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., Zettl, A.: Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003)Google Scholar
  45. 45.
    Feynman, R.: There’s plenty of room at the bottom. An invitation to enter a new field of physics. Caltech Eng. Sci. 23(5), 22–36 (1960)Google Scholar
  46. 46.
    Finn, A., Schossig, M., Norkus, V., Gerlach, G.: Microstructured surfaces on \({\rm LiTaO}_{3}\)-based pyroelectric infrared detectors. IEEE Sens. J. 11, 2204–2211 (2011). 10.1109/JSEN.2011.2128307Google Scholar
  47. 47.
    Flinn, R.A., Trojan, P.K.: Engineering Materials and Their Applications, 4th edn. Houghton-Mifflin, Boston (1990)Google Scholar
  48. 48.
    Friedman, Y.: Building Biotechnology: Business, Regulations, Patents, Law, Politics, Science, 3rd edn. Logos Press, Washington DC (2008)Google Scholar
  49. 49.
    Fukuda, T., Arai, F., Dong, L.: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc. IEEE 91(11), 1803–1818 (2003)Google Scholar
  50. 50.
    Gerlach, G., Dötzel, W.: Introduction to Microsystem Technology. A Guide for Students. Wiley, Chichester (2008)Google Scholar
  51. 51.
    Glotzer, S.C., Solomon, M.J.: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007)Google Scholar
  52. 52.
    Greiner, F., Schlaak, H.F., Tschulena, G., Korb, W.: Mikro-Nano-Integration—Nanotechnologie in der Mikrosystemtechnik. Tech. rep., Hessisches Ministerium für Wirtschaft, Verkehr und Landesentwicklung (2009). http://www.hessen-nanotech.de/mm/Broschuere_Mikro-Nano-Integration_web.pdf
  53. 53.
    Gu, L.Q., Shim, J.W.: Single molecule sensing by nanopores and nanopore devices. Analyst 135, 441–451 (2010)Google Scholar
  54. 54.
    Gu, Q., Cheng, C., Gonela, R., Suryanarayanan, S., Anabathula, S., Dai, K., Haynie, D.T.: DNA nanowire fabrication. Nanotechnology 17(1), R14–R25 (2006)Google Scholar
  55. 55.
    Härtling, T., Alaverdyan, Y., Wenzel, M.T., Kullock, R., Käll, M., Eng, L.M.: Photochemical tuning of plasmon resonances in single gold nanoparticles. J. Phys. Chem. C 112(13), 4920–4924 (2008)Google Scholar
  56. 56.
    Haussmann, A., Milde, P., Erler, C., Eng, L.M.: Ferroelectric lithography: bottom–up assembly and electrical performance of a single metallic nanowire. Nano Lett. 9(2), 763–768 (2009)Google Scholar
  57. 57.
    He, F., Han, Q., Jackson, M.J.: Nanoparticulate reinforced metal matrix nanocomposites—a review. Int. J. Nanopart. 1(4), 301–309 (2008)Google Scholar
  58. 58.
    Hea, B., Morrowa, T.J., Keating, C.D.: Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 12(5), 522–528 (2008)Google Scholar
  59. 59.
    Healy, K., Schiedt, B., Morrison, A.P.: Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine 2(6), 875–897 (2007)Google Scholar
  60. 60.
    Hess, B.: Periodic patterns in biology. Naturwissenschaften 87(5), 199–211 (2000)Google Scholar
  61. 61.
    Heyman, J.S.: Acoustophoresis method and apparatus. US Patent 5147562 (1992)Google Scholar
  62. 62.
    Huang, Z.M., Zhang, Y.Z.: Kotak, i.M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003)Google Scholar
  63. 63.
    Huie, J.C.: Guided molecular self-assembly: a review of recent efforts. Smart Mater. Struct. 12, 264–271 (2003)Google Scholar
  64. 64.
    Hussain, F., Hojjati, M., Okamoto, M., Gorga, R.E.: Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40(17), 1511–1575 (2006)Google Scholar
  65. 65.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)Google Scholar
  66. 66.
    Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1 nm diameter. Nature 363(6430), 603–605 (1993)Google Scholar
  67. 67.
    Iler, R.K.: Multilayers of colloidal particles. J. Colloid Interface Sci. 21(6), 569–594 (1966)Google Scholar
  68. 68.
    Inoue, K., Ohtaka, K. (eds.): Photonic Crystals: Physics, Fabrication, and Applications. Springer, Berlin, Heidelberg (2004)Google Scholar
  69. 69.
    International technology roadmap for semiconductors: 2009 edition. Technical report, Assembly & Packaging (2009). http://www.itrs.net/Links/2009ITRS/Home2009.htm
  70. 70.
    Jones, M.N., Chapman, D.: Micelles. Monolayers and Biomembranes. Wiley-Liss, New York (1995)Google Scholar
  71. 71.
    Jun, Y.W., Seo, J.W., Oh, S.J., Cheon, J.: Recent advances in the shape control of inorganic nano-building blocks. Coord. Chem. Rev. 249(17–18), 1766–1775 (2005)Google Scholar
  72. 72.
    Kaizawa, T., Arita, M., Fujiwara, A., Yamazaki, K., Ono, Y., Inokawa, H., Takahashi, Y., Choi, J.B.: Single-electron device with Si nanodot array and multiple input gates. IEEE T. Nanotechnol. 8(4), 535–541 (2009)Google Scholar
  73. 73.
    Kickelbick, G.: Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 28(1), 83–114 (2003)Google Scholar
  74. 74.
    Kim, P., Lieber, C.M.: Nanotube nanotweezers. Science 286(5447), 2148–2150 (1999)Google Scholar
  75. 75.
    Kim, S.O., Solak, H.H., Stoykovich, M.P., Ferrier, N.J., de Pablo, J.J., Nealey, P.F.: Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003)Google Scholar
  76. 76.
    Kovarik, M.L., Jacobson, S.C.: Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles. Anal. Chem. 80(3), 657–664 (2008)Google Scholar
  77. 77.
    Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: \({\rm C}_{60}\): Buckminsterfullerene. Nature 318(6042), 162–163 (1985)Google Scholar
  78. 78.
    Kuzik, L.A., Yakovlev, V.A., Pudonin, F.A., Mattei, G.: Quantum size effects in the optical conductivity of ultrathin metal films. Surf. Sci. 361–362, 882–885 (1996)Google Scholar
  79. 79.
    Lee, H., Lee, S., Jung, S., Lee, J.: Nano-grass polyimide-based humidity sensors. Sens. Actuators B 154, 2–8 (2011)Google Scholar
  80. 80.
    Lindsey, J.S.: Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives: a review. New J. Chem. 15(2–3), 153–179 (1991)Google Scholar
  81. 81.
    London: The Royal Society: Nanoscience and Nanotechnologies: Opportunities and Uncertainties. Latimer Trend Ltd, Plymouth, UK (2004). http://royalsociety.org/Nanoscience-and-nanotechnologies-opportunities-and-uncertainties-/
  82. 82.
    Lourtioz, J.M.: Photonic Crystals: Towards Nanoscale Photonic Devices. Springer, Berlin (2007)Google Scholar
  83. 83.
    Lövestam, G., Rauscher, H., Roebben, G., Klüttgen, B.S., Gibson, N., Putaud, J.P., Stamm, H.: Considerations on a definition of nanomaterial for regulatory purposes. jrc reference reports. Technical report, European Commission, Joint Research Center (2010)Google Scholar
  84. 84.
    Lu, W., Lieber, C.M.: Semiconductor nanowires. J. Phys. D Appl. Phys. 39, R387–R406 (2006)Google Scholar
  85. 85.
    Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007)Google Scholar
  86. 86.
    Manzke, A., Vogel, N., Weiss, C.K., Ziener, U., Plettl, A., Landfester, K., Ziemann, P.: Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method. Nanoscale 3, 2523–2528 (2011)Google Scholar
  87. 87.
    McCray, W.P.: Will small be beautiful? Making policies for our nanotech future. History and Technology 21(2), 177–203 (2005)Google Scholar
  88. 88.
    Mehran, M., Sanaee, Z., Mohajerzadeh, S.: Formation of silicon nanograss and microstructures on silicon using deep reactive ion etching. Micro& Nano Lett. 5, 374–378 (2010)Google Scholar
  89. 89.
    Miche, l.B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Renault, J.P., Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R., Wolf, H.: Printing meets lithography: soft approaches to high-resolution patterning. IBM J. Res. Dev. 45(5), 697–719 (2001)Google Scholar
  90. 90.
    Mijatovic, D., Eijkel, J.C.T., van den Berg, A.: Technologies for nanofluidic systems: top–down vs bottom–up—a review. Lab Chip 5, 492–500 (2005)Google Scholar
  91. 91.
    Minko, S., Müller, M., Motornov, M., Nitschke, M., Grundke, K., Stamm, M.: Two-level structured self-adaptive surfaces with reversibly tunable properties. J. Am. Chem. Soc. 125(13), 3896–3900 (2003)Google Scholar
  92. 92.
    Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996)Google Scholar
  93. 93.
    Moffitt, J.R., Chemla, Y.R., Smith, S.B., Bustamante, C.: Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008)Google Scholar
  94. 94.
    Monthioux, M., Kuznetsov, V.: Who should be given the credit for the discovery of carbon nanotubes? Carbon 44(9), 1621 (2006)Google Scholar
  95. 95.
    Moriarty, P.: Nanostructured materials. Rep. Prog. Phys. 64, 297–381 (2001)Google Scholar
  96. 96.
    Morris, J.E.: Nanopackaging: nanotechnologies and electronic packaging. In: ESTC 2006, 1st Electronics Systemintegration Technology Conference, pp. 874–880. Dresden, Germany (2006)Google Scholar
  97. 97.
    Morris, J.E. (ed.): Nanopackaging: Nanotechnologies and Electronics Packaging. Springer, New York (2008)Google Scholar
  98. 98.
    Mutter, M., Vuilleumier, S.: A chemical approach to protein design—template-assembled synthetic proteins (TASP). Angew. Chem. Int. Ed. 28(5), 535–554 (1989)Google Scholar
  99. 99.
    Naeemi, A., Meindl, J.D.: Carbon nanotube interconnects. In: ISPD ’07 Proceedings of the 2007 International Symposium on Physical Design, pp. 77–84. Austin, Texas (2007)Google Scholar
  100. 100.
    Naeemi, A., Sarvari, R., Meindl, J.D.: Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron Device Lett. 26(2), 84–86 (2005)Google Scholar
  101. 101.
    Nagayama, K.: Two-dimensional self-assembly of colloids in thin liquid films. Colloids Surf. A 109, 363–374 (1996)Google Scholar
  102. 102.
    Nanotechnologies—terminology and definitions for nanoobjects—nanoparticle, nanofibre and nanoplate. CEN ISO/TS 27687:2009 (2009)Google Scholar
  103. 103.
    Nanotechnologies. ISO/TC 229 (2010). http://isotc.iso.org/livelink/livelink/open/tc229
  104. 104.
    Nanotechnologies—vocabulary—part 1: Core terms. ISO/TS 80004–1:2010 (2010)Google Scholar
  105. 105.
    Netzer, L., Sagiv, J.: A new approach to construction of artificial monolayer assemblies. J. Am. Chem. Soc. 105(3), 674–676 (1983)Google Scholar
  106. 106.
    Novotny, L., Bian, R.X., Xie, X.S.: Theory of nanometric optical tweezers. Phys. Rev. Lett. 79(4), 645–648 (1997)Google Scholar
  107. 107.
    Owen, J.H.G., Miki, K., Bowler, D.R.: Self-assembled nanowires on semiconductor surfaces. J. Mater. Sci. 41(14), 4568–4603 (2006)Google Scholar
  108. 108.
    Papadopoulos, C., Chang, B.H., Yin, A.J., Xu, J.M.: Engineering carbon nanotubes via template growth. Int. J. Nanosci. 1(3–4) (2002)Google Scholar
  109. 109.
    Patolsky, F., Zheng, G., Lieber, C.M.: Nanowire sensors for medicine and the life sciences. Nanomedicine 1(1), 51–65 (2006)Google Scholar
  110. 110.
    Petersson, F., Åberg, L., Swärd-Nilsson, A.M., Laurell, T.: Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79(14), 5117–5123 (2007)Google Scholar
  111. 111.
    Pethiga, R., Markx, G.: Applications of dielectrophoresis in biotechnology. Trends Biotechnol. 15(10), 426–432 (1997)Google Scholar
  112. 112.
    Reich, S., Thomsen, C., Maultzsch, J.: Carbon Nanotubes: Basic Concepts and Physical Properties. Wiley-VCH, Berlin (2004)Google Scholar
  113. 113.
    Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74(10), 1283–1342 (2002)Google Scholar
  114. 114.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)Google Scholar
  115. 115.
    Rubio-Sierra, F.J., Heckl, W.M., Stark, R.W.: Nanomanipulation by atomic force microscopy. Adv. Eng. Mater. 7(4), 193–196 (2005)Google Scholar
  116. 116.
    Schasfoort, R.B.M., Tudos, A.J. (eds.): Handbook of Surface Plasmon Resonance. RSC Publishing, London (2008)Google Scholar
  117. 117.
    Schossig, M., Norkus, V., Gerlach, G.: Infrared responsivity of pyroelectric detectors with nanostructured NiCr thin-film absorber. IEEE Sens. J. 10, 1564–1565 (2010)Google Scholar
  118. 118.
    Seeman, N.C.: Nucleic acid junctions and lattices. J. Theor. Biol. 99(2), 237 (1982)Google Scholar
  119. 119.
    Seeman, N.C.: From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci 30(3), 119–125 (2005)Google Scholar
  120. 120.
    Shankland, S.: IBM’s 35 atoms and the rise of nanotech. Technical Report. CNET News (2009). www.zdnetasia.com/ibms-35-atoms-and-the-rise-of-nanotech-62058148.htm
  121. 121.
    Shieh, J., Lin, C.H., Yang, M.C.: Plasma nanofabrications and antireflection applications. J. Phys. D: Appl. Phys. 40(8), 2242–2246 (2007)Google Scholar
  122. 122.
    Shimomura, M., Sawadaishi, T.: Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr. Opin. Colloid Interface Sci. 6(1), 11–16 (2001)Google Scholar
  123. 123.
    Shipway, A.N., Katz, E., Willner, I.: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1(1), 19–52 (2000)Google Scholar
  124. 124.
    Singh, R., Maru, V.M., Moharir, P.S.: Complex chaotic systems and emergent phenomena. J. Nonlinear Sci. 8(3), 235–259 (1998)Google Scholar
  125. 125.
    Sitti, M.: Survey of micromanipulation systems. In: IEEE Nano 2001. Proceedings of the 1st IEEE Conference on. Nanotechnology 2001, 75–80 (2001)Google Scholar
  126. 126.
    Sitti, M.: Micro- and nano-scale robotics. In: Proceedings of the 2004 American Control Conference, pp. 1–8. Boston (2004)Google Scholar
  127. 127.
    Srinivasan, U., Howe, R.T., Liepmann, D.: Microstructure to substrate self-assembly using capillary forces. J. Microelectromech. Syst. 10, 17–24 (2001)Google Scholar
  128. 128.
    Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W., Dekker, C.: Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003)Google Scholar
  129. 129.
    Stuart, M.A.C., Huck, W.T.S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., Minko, S.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010)Google Scholar
  130. 130.
    Sugi, M.: Langmuir-blodgett films—A course towards molecular electronics: A review. J. Mol. Electron. 1, 3–17 (1985)Google Scholar
  131. 131.
    Sun, J., Simon, S.L.: The melting behavior of aluminum nanoparticles. Thermochim. Acta 463(1–2), 32–40 (2007)Google Scholar
  132. 132.
    Taniguchi, N.: On the basic concept of ‘nano-technology’. In: Proceedings of the International Conference Product Engineering, Part II, Society of Precision Engineering, Society of Precision Engineering, Tokyo, Japan (1974)Google Scholar
  133. 133.
    Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.S., Geerligs, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624), 474–477 (1997)Google Scholar
  134. 134.
    The Convention on Biological Diversity. Article 2. Use of Terms. Technical report, United Nations (1992). http://www.cbd.int/convention/text/
  135. 135.
    Tristram-Nagle, S., Nagle, J.F.: Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Chem. Phys. Lipids 127(1), 3–14 (2004)Google Scholar
  136. 136.
    Tu, R.S., Tirrell, M.: Bottom-up design of biomimetic assemblies. Adv. Drug Delivery Rev. 56, 1537–1563 (2004)Google Scholar
  137. 137.
    Tumanski, S.: Thin film magnetoresistive sensors. Institute of Physics Publishers, Bristol (2001)Google Scholar
  138. 138.
    Tummala, R. (ed.): Fundamentals of Microsystems Packaging. McGraw-Hill, New York (2001)Google Scholar
  139. 139.
    Tummala, R.R., Rymaszewski, E.J., Klopfenstein, A.G. (eds.): Microelectronic Packaging Handbook, 3 vols. 2nd edn. Chapman& Hall, New York (1996)Google Scholar
  140. 140.
    Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)Google Scholar
  141. 141.
    Vaddiraju, S., Tomazos, I., Burgess, D.J., Jain, F.C., Papadimitrakopoulos, F.: Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)Google Scholar
  142. 142.
    van Blaaderen, A., Ruel, R., Wiltzius, P.: Template-directed colloidal crystallization. Nature 385, 321–324 (1997)Google Scholar
  143. 143.
    Verma, A., Stellacci, F.: Effect of surface properties on nanoparticle-cell interactions. Small 6(1), 12–21 (2010)Google Scholar
  144. 144.
    Wang, L.W.: Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)Google Scholar
  145. 145.
    Wang, X.B., Huang, Y., Becker, F.F., Gascoyne, P.R.C.: A unified theory of dielectrophoresis and travelling wave dielectrophoresis. J. Phys. D Appl. Phys. 27, 1571 (1994)Google Scholar
  146. 146.
    Wang, Z.L.: Toward self-powered sensor networks. Nano Today 5, 512–514 (2010)Google Scholar
  147. 147.
    Whitesides, G., Grzybowski, B.: Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)Google Scholar
  148. 148.
    Whitesides, G.M., Boncheva, M.: Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 99(8), 4769–4774 (2002)Google Scholar
  149. 149.
    Whitesides, G.M., Love, J.C.: The art of building small. Sci. Am. 285(3), 32–41 (2001)Google Scholar
  150. 150.
    Wolf, E.L.: Nanophysics and Nanotechnology: an introduction to modern concepts in nanoscience, 2nd edn. Wiley-VCH, Weinheim (2006)Google Scholar
  151. 151.
    Wong, C.P., Moon, K.S., Li, Y. (eds.): Nano-Bio-Electronic. Photonic and MEMS Packaging. Springer, New York (2010)Google Scholar
  152. 152.
    Wu, B., Kumar, A.: Extreme ultraviolet lithography: a review. J. Vac. Sci. Technol. B 25, 1743–1761 (2007)Google Scholar
  153. 153.
    Yao, H.B., Fang, H.Y., Wang, X.H., Yu, S.H.: Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chem. Soc. Rev. 40, 3764–3785 (2011)Google Scholar
  154. 154.
    Yogeswaran, U., Chen, S.M.: A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8, 290–313 (2008)Google Scholar
  155. 155.
    Zhang, Z., Horsch, M.A., Lamm, M.H., Glotzer, S.C.: Tethered nano building blocks: toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 3(10), 1341–1346 (2003)Google Scholar
  156. 156.
    Zhao, X.M., Xia, Y., Whitesides, G.M.: Soft lithographic methods for nano-fabrication. J. Mater. Chem. 7(7), 1069–1074 (1997)Google Scholar
  157. 157.
    Zhu, M.Q., Wang, L.Q., Exarhos, G.J., Li, A.D.Q.: Thermosensitive gold nanoparticles. J. Am. Chem. Soc. 126(9), 2656–2657 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Solid-State Electronics LaboratoryTechnische Universität DresdenDresdenGermany

Personalised recommendations