Biostability of Electronic Packaging Materials

Chapter

Abstract

One of the most important properties required for implantable electronic microsystems is their high biocompatibility grade or biostability, needed for maintening device functionality. The biostability characterizes the interactions between a technical and a biological system, which take place predominantly at their interface. It depends on duration and manner of contact between the electronic device and tissues, gases and fluids of the human body and is conditioned by degradation mechanisms, inherent to its functional materials. Housings, encapsulations and special coatings are used for protection of electronic systems from biological milieus and for avoiding of foreign substance release into it and, hence, play a decisive role in the biostability of the final product.

Keywords

Electronic Packaging Permanent Contact Biological Milieu Plasma Ionic Concentration Print Circuit Board Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Browne, M., Gregson, P.I.: Surface modification of titanium alloy implants. J. Biomater. 15, 894–898 (1994)CrossRefGoogle Scholar
  2. 2.
    Devanathan, D., Carr, R.: Polymeric conformal coatings for implantable electronic devices. IEEE Trans. Biomed. Eng. 27, 671–674 (1980)CrossRefGoogle Scholar
  3. 3.
    Flemming, C.A., Trevors, J.T.: Copper toxicity and chemistry in the environment. Water Air Soil Pollut. 44, 143–458 (1989)CrossRefGoogle Scholar
  4. 4.
    Fryer, T.B., Corbin, S.D., Silverberg, G.D., et al.: Telemetry of intracranial pressure. Biotelem. Patient Monitoring 5, 88–112 (1978)Google Scholar
  5. 5.
    Gorham, W.F.: A new, general synthetic method for the preparation of linear poly-p-xylylenes. J. Polym. Sci. 4, 3027–3039 (1966)Google Scholar
  6. 6.
    Loeb, G.E., Bak, M.J., Salcman, M., et al.: Parylene as a chronically stable, reproducible microelectrode insulator. IEEE Trans. Biomed. Eng. BME-24, 121–128 (1977)Google Scholar
  7. 7.
    Meng, C.K., Selvamuniandy, T.S., Gurumurthy, C.: Discoloration related failure mechanism and its root cause in Electroless Nickel Immersion Gold (ENIG) Pad metallurgical surface finish. In: Proceedings of 11\({\rm th}\) IPFA, Taiwan (2004)Google Scholar
  8. 8.
    Nagl, M., Lechleitner, T.: Barrier coatings for medical electronic implants. Vac. Best VIP 17, 47–50 (2005)Google Scholar
  9. 9.
    Stieglitz, T., Kammer, S., Koch, K.P., et al.: Encapsulation of flexible biomedical microimplants with parylene C. In: Proceedings of the 7\(\rm {th}\) International Annual International Conference of the IFESS, pp. 231–233 (2002)Google Scholar
  10. 10.
    Strehblow, H.H.: Mechanisms of Pitting Corrosion. In: Marcus, P. (ed.) Corrosion Mechanisms in Theory and Practice. Marcel Dekker, New York (2002)Google Scholar
  11. 11.
    Williams, D.F.: Definitions in biomaterials. In: Proceedings of a Consensus Conference of the European Society for Biomaterials. Elsevier, Amsterdam (1987)Google Scholar
  12. 12.
    Xie, J., Sun, M., Pecht, M., et al.: Why gold flash can be detrimental to long-term reliability. J. Electron. Packag. 126, 37–40 (2004)CrossRefGoogle Scholar
  13. 13.
    Zeeck, A. (ed.): Chemie für Mediziner. Urban & Schwarzenberg, Baltimore (1990)Google Scholar
  14. 14.
    Zimmermann, D.: Einfluss der Oberflächenorientierung und der chemischen Zusammensetzung auf das Oxidationsverhalten von \(\beta \)-NiAl Einkristallen. Dissertation, Max-Planck-Institut für Metallforschung, Stuttgart (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Electronics Packaging LaboratoryTechnische Universität DresdenDresdenGermany

Personalised recommendations