Electromagnetic Aspects in Cell Biology

Chapter

Abstract

In the present review we will concentrate on the “new view” (which emerged in the last years) onto ion—related and electrical processes in biological cells. In the second part we will look onto the consequences of these properties for interfacing with technical devices.

Keywords

Hair Cell Stochastic Resonance Human Vascular Endothelial Cell Conduction Charge NHE1 Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adams, D.S., Masi, A., Levin, M.: \({\rm H}^{+}\) pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 134, 1323–1335 (2007)CrossRefGoogle Scholar
  2. 2.
    Adams, D.S., Robinson, K.R., Fukumoto, T., Yuan, S., Albertson, R.C., Yelick, P., Kuo, L., McSweeney, M., Levin, M.: Early, \({\rm H}^{+}\)-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 133, 1657–1671 (2006)CrossRefGoogle Scholar
  3. 3.
    Adey, W.R.: Collective properties of cell membranes. In: B. Norden, K. Ramel (eds.) Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems. Oxford University Press, Oxford (1992)Google Scholar
  4. 4.
    Adey, W.R.: Elf magnetic fields and promotion of cancer; experimental studies. In: B. Norden, K. Ramel (eds.) Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems. Oxford University Press, Oxford (1992)Google Scholar
  5. 5.
    Adey, W.R.: Evidence for nonthermal electromagnetic bioeffects: potential health risks in evolving low-frequency and microwave environments. In: Clements-Croome, D. (ed.) Electromagnetic Environments and Safety in Buildings. Taylor and Francis, Spon Press, London (2003)Google Scholar
  6. 6.
    Astumian, R.D.: Electroconformational coupling of membrane proteins. Annals N. Y. Acad. Sci. 720, 136–140 (1994)CrossRefGoogle Scholar
  7. 7.
    Astumian, R.D.: Thermodynamics and kinetics of a brownian motor. Science 276, 917–922 (1997)CrossRefGoogle Scholar
  8. 8.
    Aswal, D.K., Lenfant, S., Guerin, D., Yakhmi, J.V., Vuillaume, D.: Self assembled monolayers on silicon for molecular electronics. Anal. Chim. Acta 568, 84–108 (2006)CrossRefGoogle Scholar
  9. 9.
    Badzey, R.L., Mohanty, P.: Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance. Nature 437, 995–998 (2005)CrossRefGoogle Scholar
  10. 10.
    Blank, M.: Do electromagnetic fields interact with electrons in the Na, K-ATPase? Bioelectromagnetics 26, 677–683 (2005)CrossRefGoogle Scholar
  11. 11.
    Blank, M., Soo, L.: Enhancement of cytochrome oxidase activity in 60 Hz magnetic fields. Bioelectrochem. Bioenerg. 45, 253–259 (1998)CrossRefGoogle Scholar
  12. 12.
    Blank, M., Soo, L.: Frequency dependency of cytochrome oxidase activity in magnetic fields. Bioelectrochem. Bioenerg. 46, 139–143 (1998)CrossRefGoogle Scholar
  13. 13.
    Blank, M., Soo, L.: Optimal frequencies for magnetic acceleration of cytochrome oxidase and NaK-ATPase reactions. Bioelectrochemistry 53, 171–174 (2001)CrossRefGoogle Scholar
  14. 14.
    Blank, M., Soo, L.: Electromagnetic acceleration of the Belousov-Zhabotinski reaction. Bioelectrochemistry 61, 93–97 (2003)CrossRefGoogle Scholar
  15. 15.
    Borgens, R., et al.: Electric Fields in Vertebrate Repair. Wiley, NewYork (1989)Google Scholar
  16. 16.
    Braun, D., Fromherz, P.: Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye. Biophys. J. 87, 1351–1359 (2004)CrossRefGoogle Scholar
  17. 17.
    Breme, J., Kirkpatrick, C.J., Thull, R.: Metallic Biomaterial Interfaces. Wiley-Vch, Weinheim (2007). ISBN: 978-3527318605Google Scholar
  18. 18.
    Brown, M.J., Loew, L.M.: Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J. Cell Biol. 127, 117–128 (1994)CrossRefGoogle Scholar
  19. 19.
    Buck, S.M., Xu, H., Brasuel, M., Philbert, M.A., Kopelman, R.: Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells. Talanta 63, 41–59 (2004)CrossRefGoogle Scholar
  20. 20.
    Chang, W.H., Chang, K.T., Li, J.: Applications of therapeutic effects of electromagnetic fields. In: Stavroulakis, P. (ed.) Biological Effects of Electromagnetic Fields: Mechanisms, Modeling, Biological Effects, Therapeutic Effects, International Standards. Exposure Criteria. Springer, Berlin (2003). ISBN 978-3540429890Google Scholar
  21. 21.
    Cho, M.R., Thatte, H.S., Lee, R.C., Golan, D.E.: Reorganization of microfilament structure induced by ac electric fields. FASEB J. 10, 1552–1558 (1996)Google Scholar
  22. 22.
    Cooper, M.S., Keller, R.E.: Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc. Natl. Acad. Sci. USA 81, 160–164 (1984)CrossRefGoogle Scholar
  23. 23.
    Denker, S.P., Huang, D.C., Orlowski, J., Furthmayr, H., Barber, D.L.: Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol. Cell. 6, 1425–1436 (2000)CrossRefGoogle Scholar
  24. 24.
    Eddleman, C.S., Bittner, G.D., Fishman, H.M.: Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed. Biophys. J. 79, 1883–1890 (2000)CrossRefGoogle Scholar
  25. 25.
    Fecko, C.J., Eaves, J.D., Loparo, J.J., Tokmakoff, A., Geissler, P.L.: Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003)CrossRefGoogle Scholar
  26. 26.
    Fields, R.D.: The shark’s electric sense. Sci. Am. 297, 74–80 (2007)CrossRefGoogle Scholar
  27. 27.
    Fishman, H.M., Bittner, G.D.: Vesicle-mediated restoration of a plasmalemmal barrier in severed axons. News Physiol. Sci. 18, 115–118 (2003)Google Scholar
  28. 28.
    Fitzsimmons, R.J., Baylink, D.J.: Growth factors and electromagnetic fields in bone. Clin. Plast. Surg. 21, 401–406 (1994)Google Scholar
  29. 29.
    Fitzsimmons, R.J., Strong, D.D., Mohan, S., Baylink, D.J.: Low-amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release. J. Cell. Physiol. 150, 84–89 (1992)CrossRefGoogle Scholar
  30. 30.
    Friedl, P., Wolf, K.: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003)CrossRefGoogle Scholar
  31. 31.
    Funk, R.H., Monsees, T., Ozkucur, N.: Electromagnetic effects—from cell biology to medicine. Prog. Histochem. Cytochem. 43, 177–264 (2009)CrossRefGoogle Scholar
  32. 32.
    Funk, R.H., Monsees, T.K.: Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review. Cells Tissues Organs 182, 59–78 (2006)CrossRefGoogle Scholar
  33. 33.
    Funk, R.H.W., Apple, D.J., Naumann, G.O.H.: Embryologie, anatomie und untersuchungstechnik. In: Naumann, G.O.H. (ed.) Pathologie des Auges. Springer, Berlin (2002)Google Scholar
  34. 34.
    Gartzke, J., Lange, K.: Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli. Am. J. Physiol. Cell Physiol. 283, C1333–C1346 (2002)Google Scholar
  35. 35.
    Grasso, S., Hernandez, J.A., Chifflet, S.: Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture. Am. J. Physiol. Cell Physiol. 293, C1327–C1337 (2007)CrossRefGoogle Scholar
  36. 36.
    Grinstein, S., Woodside, M., Waddell, T.K., Downey, G.P., Orlowski, J., Pouyssegur, J., Wong, D.C., Foskett, J.K.: Focal localization of the NHE-1 isoform of the \({\rm Na}^{+}\)/\({\rm H}^{+}\) antiport: assessment of effects on intracellular pH. Embo J. 12, 5209–5218 (1993)Google Scholar
  37. 37.
    Harris, A.K., Pryer, N.K., Paydarfar, D.: Effects of electric fields on fibroblast contractility and cytoskeleton. J. Exp. Zool. 253, 163–176 (1990)CrossRefGoogle Scholar
  38. 38.
    Hastings, G.W., Mahmud, F.A.: Electrical effects in bone. J. Biomed. Eng. 10, 515–521 (1988)CrossRefGoogle Scholar
  39. 39.
    Hotary, K.B., Robinson, K.R.: Endogenous electrical currents and the resultant voltage gradients in the chick embryo. Dev. Biol. 140, 149–160 (1990)CrossRefGoogle Scholar
  40. 40.
    Hotary, K.B., Robinson, K.R.: Evidence of a role for endogenous electrical fields in chick embryo development. Development 114, 985–996 (1992)Google Scholar
  41. 41.
    Jaffe, L.: Developmental currents, voltages, and gradients. In: S. Subtelny (ed.) Developmental Order: its origin and regulation, pp. 183–215. Alan R Liss, NewYork (1982)Google Scholar
  42. 42.
    Kindzelskii, A.L., Petty, H.R.: Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses. Eur. Biophys. J. 35, 1–26 (2005)CrossRefGoogle Scholar
  43. 43.
    Klein, M., Seeger, P., Schuricht, B., Alper, S.L., Schwab, A.: Polarization of \({{\rm Na}^{+}}/{{\rm H}^{+}}\) and \({{\rm Cl}^{-}}/{{\rm HCO}^{-}_3}\) exchangers in migrating renal epithelial cells. J. Gen. Physiol. 115, 599–608 (2000)CrossRefGoogle Scholar
  44. 44.
    Konig, S., Beguet, A., Bader, C.R., Bernheim, L.: The calcineurin pathway links hyperpolarization (Kir2.1)-induced \({\rm Ca}^{2+}\) signals to human myoblast differentiation and fusion. Development 133, 3107–3114 (2006)CrossRefGoogle Scholar
  45. 45.
    Kruglikov, I.L., Dertinger, H.: Stochastic resonance as a possible mechanism of amplification of weak electric signals in living cells. Bioelectromagnetics 14, 539–547 (1994)CrossRefGoogle Scholar
  46. 46.
    Kushmerick, J.G., Blum, A.S., Long, D.P.: Metrology for molecular electronics. Anal. Chim. Acta 568, 20–27 (2006)CrossRefGoogle Scholar
  47. 47.
    Lauffenburger, D.A., Horwitz, A.F.: Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)CrossRefGoogle Scholar
  48. 48.
    Lee, H., Cheng, Y.C., Fleming, G.R.: Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462–1465 (2007)CrossRefGoogle Scholar
  49. 49.
    Levin, M.: Large-scale biophysics: ion flows and regeneration. Trends Cell Biol. 17, 261–270 (2007)CrossRefGoogle Scholar
  50. 50.
    Levin, M., Thorlin, T., Robinson, K.R., Nogi, T., Mercola, M.: Asymmetries in \({{\rm H}^{+}}/{{\rm K}^{+}}\)-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111, 77–89 (2002)CrossRefGoogle Scholar
  51. 51.
    Liboff, R.L.: Ion cyclotron resonance in biological systems: Experimental evidence. In: Stavroulakis, P. (ed.) Biological Effects of Electromagnetic Fields: mechanisms, modeling, biological effects, therapeutic effects, international standards. Exposure Criteria. Springer, Berlin (2003)Google Scholar
  52. 52.
    Marsh, G., Beams, H.W.: Electrical control of morphogenesis in regenerating dugesia tigrina. I. relation of axial polarity to field strength. J. Cell. Physiol. 39, 191–213 (1952)CrossRefGoogle Scholar
  53. 53.
    Mathias, R.T., Rae, J.L., Baldo, G.J.: Physiological properties of the normal lens. Physiol. Rev. 77, 21–50 (1997)Google Scholar
  54. 54.
    McCaig, C.D., Rajnicek, A.M., Song, B., Zhao, M.: Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85, 943–978 (2005)CrossRefGoogle Scholar
  55. 55.
    McCaig, C.D., Zhao, M.: Physiological electrical fields modify cell behaviour. Bioessays 19, 819–826 (1997)CrossRefGoogle Scholar
  56. 56.
    McLeod, K.J., Rubin, C.T., Donahue, H.J.: Electromagnetic fields in bone repair and adaption. Radio Sci. 30, 233–244 (1995)CrossRefGoogle Scholar
  57. 57.
    Metcalf, M.E.M., Shi, R., Borgens, R.B.: Endogenous ionic currents and voltages in amphibian embryos. J. Exp. Zool. 268, 307–322 (1994)CrossRefGoogle Scholar
  58. 58.
    Mifsud, N., Scott, I., Green, A., Tattersall, J.: Temperature effects in brain slices exposed to radiofrequency fields. In: Presentation during the ERG101.013 (EDA) meeting at Dutch Ministry of Deference. The Hague, 21–22 Nov 2006Google Scholar
  59. 59.
    Monsees, T.K., Barth, K., Tippelt, S., Heidel, K., Gorbunov, A., Pompe, W., Funk, R.H.: Effects of different titanium alloys and nanosize surface patterning on adhesion, differentiation, and orientation of osteoblast-like cells. Cells Tissues Organs 180, 81–95 (2005)CrossRefGoogle Scholar
  60. 60.
    Mycielska, M.E., Djamgoz, M.B.: Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J. Cell Sci. 117, 1631–1639 (2004)CrossRefGoogle Scholar
  61. 61.
    Nishimura, K.Y., Isseroff, R.R., Nuccitelli, R.: Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J. Cell Sci. 109(1), 199–207 (1996)Google Scholar
  62. 62.
    Nohe, A., Keating, E., Fivaz, M., van der Goot, F.G., Petersen, N.O.: Dynamics of GPI-anchored proteins on the surface of living cells. Nanomedicine 2, 1–7 (2006)CrossRefGoogle Scholar
  63. 63.
    Nuccitelli, R.: A role for endogenous electric fields in wound healing. Curr. Top. Dev. Biol. 58, 1–26 (2003)CrossRefGoogle Scholar
  64. 64.
    Ojingwa, J.C., Isseroff, R.R.: Electrical stimulation of wound healing. J. Invest. Dermatol. 121, 1–12 (2003)CrossRefGoogle Scholar
  65. 65.
    Otter, M.W., McLeod, K.J., Rubin, C.T.: Effects of electromagnetic fields in experimental fracture repair. Clin. Orthop. Relat. Res. 355, 90–104 (1998)Google Scholar
  66. 66.
    Otter, M.W., Palmieri, V.R., Wu, D.D., Seiz, K.G., MacGinitie, L.A., Cochran, G.V.: A comparative analysis of streaming potentials in vivo and in vitro. J. Orthop. Res. 9, 710–719 (1992)CrossRefGoogle Scholar
  67. 67.
    Otter, M.W., Porres, L., McLeod, K.J.: An investigation of the brownian ratchet in MC-3T3-E1 osteoblast-like cells using atomic force microscopy. Trans. Soc. Phys. Regul. Biol. Med. 16, 10–11 (1996)Google Scholar
  68. 68.
    Otter, M.W., Rubin, C.T., McLeod, K.J.: Can the response of bone to extremely weak stimuli be explained by the brownian ratchet? Ann. Biomed. Eng. 25(1), 76 (1997)Google Scholar
  69. 69.
    Peskin, C.S., Odell, G.M., Oster, G.F.: Cellular motions and thermal fluctuations: the brownian ratchet. Biophys. J. 65, 316–324 (1993)CrossRefGoogle Scholar
  70. 70.
    Petrov, A.G.: Electricity and mechanics of biomembrane systems: flexoelectricity in living membranes. Anal. Chim. Acta 568, 70–83 (2006)CrossRefGoogle Scholar
  71. 71.
    Pilla, A.A.: Weak time-varying and static magnetic fields: From mechanisms to therapeutic applications. In: Stavroulakis, P. (ed.) Biological Effects of Electromagnetic Fields: mechanisms, modeling, biological effects, therapeutic effects, International Standards Exposure Criteria. Springer, Berlin (2003)Google Scholar
  72. 72.
    Piva, P.G., DiLabio, G.A., Pitters, J.L., Zikovsky, J., Rezeq, M., Dogel, S., Hofer, W.A., Wolkow, R.A.: Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005)CrossRefGoogle Scholar
  73. 73.
    Plopper, G.E., McNamee, H.P., Dike, L.E., Bojanowski, K., Ingber, D.E.: Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell 6, 1349–1365 (1995)Google Scholar
  74. 74.
    Pullar, C.E., Rizzo, A., Isseroff, R.R.: beta-adrenergic receptor antagonists accelerate skin wound healing: evidence for a catecholamine synthesis network in the epidermis. J. Biol. Chem. 281(21), 225–235 (2006)Google Scholar
  75. 75.
    Raphael, R.M., Popel, A.S., Brownell, W.E.: A membrane bending model of outer hair cell electromotility. Biophys. J. 78, 2844–2862 (2000)CrossRefGoogle Scholar
  76. 76.
    Robinson, K.R.: The responses of cells to electrical fields: a review. J. Cell Biol. 101, 2023–2027 (1985)CrossRefGoogle Scholar
  77. 77.
    Robinson, K.R., Messerli, M.A.: Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. Bioessays 25, 759–766 (2003)CrossRefGoogle Scholar
  78. 78.
    Rosa, L.P., Faber, J.: Quantum models of the mind: are they compatible with environment decoherence? Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 31902 (2004)Google Scholar
  79. 79.
    Rose, S.M.: Bioelectric control of regeneration in tubularia. Am. Zool. 14, 797–803 (1974)Google Scholar
  80. 80.
    Rosenspire, A.J., Kindzelskii, A.L., Simon, B.J., Petty, H.R.: Real-time control of neutrophil metabolism by very weak ultra-low frequency pulsed magnetic fields. Biophys. J. 88, 3334–3347 (2005)CrossRefGoogle Scholar
  81. 81.
    Schoen, I., Fromherz, P.: Extracellular stimulation of mammalian neurons through repetitive activation of \({\rm Na}^{+}\) channels by weak capacitive currents on a silicon chip. J. Neurophysiol. 100, 346–357 (2008)CrossRefGoogle Scholar
  82. 82.
    Schwab, A., Nechyporuk-Zloy, V., Fabian, A., Stock, C.: Cells move when ions and water flow. Pflugers Arch 453, 421–432 (2007)CrossRefGoogle Scholar
  83. 83.
    Shi, R., Borgens, R.B.: Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202, 101–114 (1995)CrossRefGoogle Scholar
  84. 84.
    Simeonova, M., Wachner, D., Gimsa, J.: Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm. Bioelectrochemistry 56, 215–218 (2002)CrossRefGoogle Scholar
  85. 85.
    Smith, C.: In: H. Fröhlich (ed.) Biological Coherence and Response to External Stimuli, 1st edn., pp. 549–566. Springer, Berlin (1988)Google Scholar
  86. 86.
    Song, B., Zhao, M., Forrester, J.V., McCaig, C.D.: Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc. Natl. Acad. Sci. USA 99(13), 577–582 (2002)Google Scholar
  87. 87.
    Soong, H.K., Parkinson, W.C., Bafna, S., Sulik, G.L., Huang, S.C.: Movements of cultured corneal epithelial cells and stromal fibroblasts in electric fields. Invest Ophthalmol Vis Sci 31, 2278–2282 (1990)Google Scholar
  88. 88.
    Stangl, C., Fromherz, P.: Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode. Eur. J. Neurosci. 27, 958–964 (2008)CrossRefGoogle Scholar
  89. 89.
    Stern, C.D.: Experimental reversal of polarity in chick embryo epiblast sheets in vitro. Exp. Cell Res. 140, 468–471 (1982)CrossRefGoogle Scholar
  90. 90.
    Stock, C., Gassner, B., Hauck, C.R., Arnold, H., Mally, S., Eble, J.A., Dieterich, P., Schwab, A.: Migration of human melanoma cells depends on extracellular pH and \({\rm Na}^{+}\)/\({\rm H}^{+}\) exchange. J. Physiol. 567, 225–238 (2005)CrossRefGoogle Scholar
  91. 91.
    Stock, C., Schwab, A.: Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol. (Oxf) 187, 149–157 (2006)CrossRefGoogle Scholar
  92. 92.
    Sulik, G.L., Soong, H.K., Chang, P.C., Parkinson, W.C., Elner, S.G., Elner, V.M.: Effects of steady electric fields on human retinal pigment epithelial cell orientation and migration in culture. Acta Ophthalmol (Copenh) 70, 115–122 (1992)CrossRefGoogle Scholar
  93. 93.
    Sun, S., Wise, J., Cho, M.: Human fibroblast migration in three-dimensional collagen gel in response to noninvasive electrical stimulus. I. characterization of induced three-dimensional cell movement. Tissue Eng. 10, 1548–1557 (2004)Google Scholar
  94. 94.
    Uzman, J.A., Patil, S., Uzgare, A.R., Sater, A.K.: The role of intracellular alkalinization in the establishment of anterior neural fate in Xenopus. Dev Biol 193, 10–20 (1998)CrossRefGoogle Scholar
  95. 95.
    Valberg, P.A., Kavet, R., Rafferty, C.N.: Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat. Res. 148, 2–21 (1997)CrossRefGoogle Scholar
  96. 96.
    Wan, C., Fiebig, T., Kelley, S.O., Treadway, C.R., Barton, J.K., Zewail, A.H.: Femtosecond dynamics of DNA-mediated electron transfer. Proc. Natl. Acad. Sci. USA 96, 6014–6019 (1999)CrossRefGoogle Scholar
  97. 97.
    Wang, E., Zhao, M., Forrester, J.V., McCaig, C.D.: Bi-directional migration of lens epithelial cells in a physiological electrical field. Exp. Eye Res. 76, 29–37 (2003)CrossRefGoogle Scholar
  98. 98.
    Wang, E., Zhao, M., Forrester, J.V., et al.: Re-orientation and faster, directed migration of lens epithelial cells in a physiological electric field. Exp. Eye Res. 71, 91–98 (2000)CrossRefGoogle Scholar
  99. 99.
    Wenger, O.S., Leigh, B.S., Villahermosa, R.M., Gray, H.B., Winkler, J.R.: Electron tunneling through organic molecules in frozen glasses. Science 307, 99–102 (2005)CrossRefGoogle Scholar
  100. 100.
    Woodruff, R.I.: Calmodulin transit via gap junctions is reduced in the absence of an electric field. J. Insect Physiol. 51, 843–852 (2005)CrossRefGoogle Scholar
  101. 101.
    Xie, T.D., Chen, Y., Marszalek, P., Tsong, T.Y.: Fluctuation-driven directional flow in biochemical cycle: further study of electric activation of NaK pumps. Biophys. J. 72, 2496–2502 (1997)CrossRefGoogle Scholar
  102. 102.
    Xie, T.D., Marszalek, P., Chen, Y.D., Tsong, T.Y.: Recognition and processing of randomly fluctuating electric signals by Na. K-ATPase. Biophys. J. 67, 1247–1251 (1994)CrossRefGoogle Scholar
  103. 103.
    Yoda, A., Clark, A.W., Yoda, S.: Reconstitution of (\({{\rm Na}^{+}}{+}{{\rm K}^{+}}\))-ATPase proteoliposomes having the same turnover rate as the membranous enzyme. Biochim. Biophys. Acta 778, 332–340 (1984)CrossRefGoogle Scholar
  104. 104.
    Yu, S.R., Burkhardt, M., Nowak, M., Ries, J., Petrasek, Z., Scholpp, S., Schwille, P., Brand, M.: Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461, 533–536 (2009)CrossRefGoogle Scholar
  105. 105.
    Zhao, M., Dick, A., Forrester, J.V., McCaig, C.D.: Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol. Biol. Cell 10, 1259–1276 (1999)Google Scholar
  106. 106.
    Zhao, M., Forrester, J.V., McCaig, C.D.: A small, physiological electric field orients cell division. Proc. Natl. Acad. Sci. U. S. A. 96, 4942–4946 (1999)CrossRefGoogle Scholar
  107. 107.
    Zhao, M., McCaig, C.D., Agius-Fernandez, A., Forrester, J.V., Araki-Sasaki, K.: Human corneal epithelial cells reorient and migrate cathodally in a small applied electric field. Curr. Eye Res. 16, 973–984 (1997)CrossRefGoogle Scholar
  108. 108.
    Zhao, M., Pu, J., Forrester, J.V., McCaig, C.D.: Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J. 16, 857–859 (2002)Google Scholar
  109. 109.
    Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G., Wang, F., Guo, A., Walczysko, P., Gu, Y., Sasaki, T., Suzuki, A., Forrester, J.V., Bourne, H.R., Devreotes, P.N., McCaig, C.D., Penninger, J.M.: Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of AnatomyTechnische Universität DresdenDresdenGermany

Personalised recommendations