Biofunctionalization of Surfaces Using Ultrathin Nanoscopic Collagen Matrices

  • Jens Friedrichs
  • Anna Taubenberger
  • Susanne Wegmann
  • David A. Cisneros
  • Clemens Franz
  • Daniel J. Müller
Chapter

Abstract

The biofunctionalization of materials creates interfaces on which proteins, cells, or tissues can fulfill native or desired tasks. Here we report how to control the assembly of type I collagen into well-defined nanoscopic matrices of different patterns. Collagen fibrils in these ultrathin (approximately 3 nm) matrices maintained their native structure as observed in vivo. This opens up the possibility to create programmable biofunctionalized matrices using collagen-binding proteins or proteins fused with collagen-binding domains. Applied to eukaryotic cells, these nanostructured matrices can direct cellular processes such as adhesion, orientation and migration.

Keywords

Atomic Force Microscopy Collagen Fibril Collagen Matrix Collagen Molecule Collagen Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Canty, E.G., Kadler, K.E.: Collagen fibril biosynthesis in tendon: a review and recent insights. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133(4), 979–985 (2002)CrossRefGoogle Scholar
  2. 2.
    Cavalcanti-Adam, E.A., Micoulet, A., Blummel, J., Auernheimer, J., Kessler, H., Spatz, J.P.: Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur. J. Cell Biol. 85(3–4), 219–224 (2006)CrossRefGoogle Scholar
  3. 3.
    Chapman, J.A., Tzaphlidou, M., Meek, K.M., Kadler, K.E.: The collagen fibril—a model system for studying the staining and fixation of a protein. Electron Microsc. Rev. 3(1), 143–182 (1990)CrossRefGoogle Scholar
  4. 4.
    Cisneros, D., Friedrichs, J., Taubenberger, A., Franz, C., Muller, D.J.: Development of nanoscopic collagen matrices for biological and biotechnological applications. Small 3, 956–963 (2007)CrossRefGoogle Scholar
  5. 5.
    Cisneros, D.A., Hung, C., Franz, C.M., Muller, D.J.: Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J. Struct. Biol. 154(3), 232–245 (2006)CrossRefGoogle Scholar
  6. 6.
    Cukierman, E., Pankov, R., Stevens, D.R., Yamada, K.M.: Taking cell–matrix adhesions to the third dimension. Science 294(5547), 1708–1712 (2001)CrossRefGoogle Scholar
  7. 7.
    Demers, L.M., Ginger, D.S., Park, S.J., Li, Z., Chung, S.W., Mirkin, C.A.: Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296(5574), 1836–1838 (2002)CrossRefGoogle Scholar
  8. 8.
    Engel, A., Schoenenberger, C.A., Muller, D.J.: High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr. Opin. Struct. Biol. 7(2), 279–284 (1997)CrossRefGoogle Scholar
  9. 9.
    Even-Ram, S., Yamada, K.M.: Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17(5), 524–532 (2005)CrossRefGoogle Scholar
  10. 10.
    Friedrichs, J., Taubenberger, A., Franz, C., Muller, D.: Cellular remodelling of individual collagen fibrils visualized by time-lapse AFM. J. Mol. Biol. 372, 594–607 (2007)CrossRefGoogle Scholar
  11. 11.
    Fritz, J., Katopodis, A.G., Kolbinger, F., Anselmetti, D.: Force-mediated kinetics of single p-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 95(21), 12283–12288 (1998)Google Scholar
  12. 12.
    Gallant, N.D., Michael, K.E., Garcia, A.J.: Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 16(9), 4329–4340 (2005)CrossRefGoogle Scholar
  13. 13.
    Graham, H.K., Holmes, D.F., Watson, R.B., Kadler, K.E.: Identification of collagen fibril fusion during vertebrate tendon morphogenesis. the process relies on unipolar fibrils and is regulated by collagen–proteoglycan interaction. J. Mol. Biol. 295(4), 891–902 (2000)CrossRefGoogle Scholar
  14. 14.
    Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H., Gaub, H.E.: How strong is a covalent bond? Science 283(5408), 1727–1730 (1999)CrossRefGoogle Scholar
  15. 15.
    Grinnell, F.: Fibroblast biology in three-dimensional collagen matrices. Trends. Cell. Biol. 13(5), 264–269 (2003)CrossRefGoogle Scholar
  16. 16.
    Gutsmann, T., Fantner, G.E., Kindt, J.H., Venturoni, M., Danielsen, S., Hansma, P.K.: Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization. Biophys. J. 86(5), 3186–3193 (2004)CrossRefGoogle Scholar
  17. 17.
    Hansma, P.K., Cleveland, J.P., Radmacher, M., Walters, D.A., Hillner, P.E., Bezanilla, M., Fritz, M., Vie, D., Hansma, H.G., Prater, C.B., Massie, J., Fukunaga, L., Gurley, J., Elings, V.: Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64(13), 1738–1740 (1994)Google Scholar
  18. 18.
    Hattori, S., Adachi, E., Ebihara, T., Shirai, T., Someki, I., Irie, S.: Alkali-treated collagen retained the triple helical conformation and the ligand activity for the cell adhesion via \(\alpha \)2\(\beta \)1 integrin. J. Biochem. 125(4), 676–684 (1999)CrossRefGoogle Scholar
  19. 19.
    Heise, H., Hoyer, W., Becker, S., Andronesi, O.C., Riedel, D., Baldus, M.: Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc. Natl. Acad. Sci. USA 102(44), 15871–15876 (2005)Google Scholar
  20. 20.
    Howard, J.: Molecular motors: structural adaptations to cellular functions. Nature 389(6651), 561–567 (1997)CrossRefGoogle Scholar
  21. 21.
    Ivanov, Y.D., Govorun, V.M., Bykov, V.A., Archakov, A.I.: Nanotechnologies in proteomics. Proteomics 6(5), 1399–1414 (2006)CrossRefGoogle Scholar
  22. 22.
    Jiang, F., Horber, H., Howard, J., Muller, D.J.: Assembly of collagen into microribbons: effects of pH and electrolytes. J. Struct. Biol. 148(3), 268–278 (2004)CrossRefGoogle Scholar
  23. 23.
    Jiang, H., Grinnell, F.: Cell–matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell 16(11), 5070–5076 (2005)CrossRefGoogle Scholar
  24. 24.
    Kadler, K.E., Holmes, D.F., Trotter, J.A., Chapman, J.A.: Collagen fibril formation. Biochem. J. 316(Pt 1), 1–11 (1996)Google Scholar
  25. 25.
    Kim, M.S., Kim, S.S., Jung, S.T., Park, J.Y., Yoo, H.W., Ko, J., Csiszar, K., Choi, S.Y., Kim, Y.: Expression and purification of enzymatically active forms of the human lysyl oxidase-like protein 4. J. Biol. Chem. 278(52), 52071–52074 (2003)Google Scholar
  26. 26.
    McAteer, J.A., Evan, A.P., Gardner, K.D.: Morphogenetic clonal growth of kidney epithelial cell line MDCK. Anat. Rec. 217(3), 229–239 (1987)CrossRefGoogle Scholar
  27. 27.
    Muller, D.J., Amrein, M., Engel, A.: Adsorption of biological molecules to a solid support for scanning probe microscopy. J. Struct. Biol. 119(2), 172–188 (1997)CrossRefGoogle Scholar
  28. 28.
    Muller, D.J., Buldt, G., Engel, A.: Force-induced conformational change of bacteriorhodopsin. J. Mol. Biol. 249(2), 239–243 (1995)CrossRefGoogle Scholar
  29. 29.
    Norman, J.J., Desai, T.A.: Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng. 34(1), 89–101 (2006)CrossRefGoogle Scholar
  30. 30.
    Orgel, J.P., Irving, T.C., Miller, A., Wess, T.J.: Microfibrillar structure of type i collagen in situ. Proc. Natl. Acad. Sci. USA 103(24), 9001–9005 (2006)CrossRefGoogle Scholar
  31. 31.
    Orgel, J.P., Miller, A., Irving, T.C., Fischetti, R.F., Hammersley, A.P., Wess, T.J.: The in situ supermolecular structure of type I collagen. Structure 9(11), 1061–1069 (2001)CrossRefGoogle Scholar
  32. 32.
    Pedersen, J.A., Swartz, M.A.: Mechanobiology in the third dimension. Ann. Biomed. Eng. 33(11), 1469–1490 (2005)CrossRefGoogle Scholar
  33. 33.
    Poole, K., Khairy, K., Friedrichs, J., Franz, C., Cisneros, D.A., Howard, J., Mueller, D.: Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces. J. Mol. Biol. 349(2), 380–386 (2005)CrossRefGoogle Scholar
  34. 34.
    Rief, M., Gautel, M., Gaub, H.E.: Unfolding forces of titin and fibronectin domains directly measured by AFM. Adv. Exp. Med. Biol. 481(129–136); discussion 137–141 (2000)Google Scholar
  35. 35.
    Sawhney, R.K., Howard, J.: Slow local movements of collagen fibers by fibroblasts drive the rapid global self-organization of collagen gels. J. Cell Biol. 157(6), 1083–1091 (2002)CrossRefGoogle Scholar
  36. 36.
    Schwarz, U., Haefke, H., Reimann, P., Güntherodt, H.J.: Tip artefacts in scanning force microscopy. J. Microsc. 173, 183–197 (1994)CrossRefGoogle Scholar
  37. 37.
    Vogel, V., Thomas, W.E., Craig, D.W., Krammer, A., Baneyx, G.: Structural insights into the mechanical regulation of molecular recognition sites. Trends Biotechnol. 19(10), 416–423 (2001)CrossRefGoogle Scholar
  38. 38.
    Wong, J., Velasco, A., Rajagopalan, P., Pham, Q.: Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19, 1908–1913 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jens Friedrichs
    • 1
  • Anna Taubenberger
    • 1
  • Susanne Wegmann
    • 1
  • David A. Cisneros
    • 1
  • Clemens Franz
    • 1
  • Daniel J. Müller
    • 1
  1. 1.Biotechnology CenterTechnische Universität DresdenDresdenGermany

Personalised recommendations