S-Layer Proteins as Self-Assembly Tool in Nano Bio Technology

Chapter

Abstract

Surface (S-) layers are composed of (glyco) protein subunits that cover the outermost layer of some gram-negative, gram-positive bacteria and Archaea. The ability to self-assemble into monomolecular arrays in suspensions, on solid surfaces or on lipid films makes S-layers appealing for nanobiotechnology. Genetic engineering has opened up the possibility of generating functional tailored S-layer proteins. Production of ultrafiltration membranes, immobilization matrices, vaccine derivatives and functional lipid membranes are some of the applications of native and genetically modified S-layers. More interestingly, they have been recrystallized on various substrates such as silicon, glass or noble metals to be used in biosensor development. S-layers have also been used as templates for the production of regularly distributed nanoparticles and as ultrathin high-resolution resists in downscaling of electronic devices.

Keywords

Protein Template Hafnium Oxide Geobacillus Stearothermophilus Guanidinium Hydrochloride Strain GL24 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Badelt-Lichtblau, H., Kainz, B., Vollenkle, C., Egelseer, E.M., Sleytr, U.B., Pum, D., Ilk, N.: Genetic engineering of the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 for the generation of functionalized nanoarrays. Bioconjugate Chem. 20(5), 895–903 (2009)CrossRefGoogle Scholar
  2. 2.
    Beveridge, T.J.: Bacterial S-layers. Curr. Opin. Struct. Biol. 4(2), 204–212 (1994)CrossRefGoogle Scholar
  3. 3.
    Blecha, A., Zarschler, K., Sjollema, K., Veenhuis, M., Rodel, G.: Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells. Microb. Cell Fact. 4(1), 28 (2005)CrossRefGoogle Scholar
  4. 4.
    Claus, H., Akça, E., Debaerdemaeker, T., Evrard, C., Declercq, J.P., Harris, J.R., Schlott, B., König, H.: Molecular organization of selected prokaryotic S-layer proteins. Can. J. Microbiol. 51(9), 731–743 (2005)CrossRefGoogle Scholar
  5. 5.
    Engelhardt, H.: Are S-layers exoskeletons? The basic function of protein surface layers revisited. J. Struct. Biol. 160(2), 115–124 (2007)CrossRefGoogle Scholar
  6. 6.
    Engelhardt, H.: Mechanism of osmoprotection by archaeal S-layers: a theoretical study. J. Struct. Biol. 160(2), 190–199 (2007)CrossRefGoogle Scholar
  7. 7.
    Engelhardt, H., Saxton, W.O., Baumeister, W.: Three-dimensional structure of the tetragonal surface layer of Sporosarcina ureae. J. Bacteriol. 168(1), 309–317 (1986)Google Scholar
  8. 8.
    Golowczyc, M.A., Mobili, P., Garrote, G.L., Abraham, A.G., De Antoni, G.L.: Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar enteritidis. Int. J. Food Microbiol. 118(3), 264–273 (2007)CrossRefGoogle Scholar
  9. 9.
    Ilk, N., Küpcü, S., Moncayo, G., Klimt, S., Ecker, R.C., Hofer-Warbinek, R., Egelseer, E.M., Sleytr, U.B., Sára, M.: A functional chimaeric S-layer-enhanced green fluorescent protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells. Biochem. J. 379(2), 441–448 (2004). doi: 10.1042/BJ20031900 CrossRefGoogle Scholar
  10. 10.
    Jarosch, M., Egelseer, E.M., Huber, C., Moll, D., Mattanovich, D., Sleytr, U.B., Sára, M.: Analysis of the structure–function relationship of the S-layer protein SbsC of Bacillus stearothermophilus ATCC 12980 by producing truncated forms. Microbiology 147(5), 1353–1363 (2001)Google Scholar
  11. 11.
    Liu, J., Mao, Y., Lan, E., Banatao, D.R., Forse, G.J., Lu, J., Blom, H.O., Yeates, T.O., Dunn, B., Chang, J.P.: Generation of oxide nanopatterns by combining self-assembly of S-layer proteins and area-selective atomic layer deposition. J. Am. Chem. Soc. 130(50), 16908–16913 (2008)Google Scholar
  12. 12.
    Mark, S.S., Bergkvist, M., Bhatnagar, P., Welch, C., Goodyear, A.L., Yang, X., Angert, E.R., Batt, C.A.: Thin film processing using S-layer proteins: biotemplated assembly of colloidal gold etch masks for fabrication of silicon nanopillar arrays. Colloids Surf. B 57(2), 161–173 (2007)Google Scholar
  13. 13.
    Mertig, M., Kirsch, R., Pompe, W., Engelhardt, H.: Fabrication of highly oriented nanocluster arrays by biomolecular templating. Eur. Phys. J. D 9(1), 45–48 (1999)CrossRefGoogle Scholar
  14. 14.
    Muller, D., Baumeister, W., Engel, A.: Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178(11), 3025–3030 (1996)Google Scholar
  15. 15.
    Queitsch, U., Mohn, E., Schaffel, F., Schultz, L., Rellinghaus, B., Bluher, A., Mertig, M.: Regular arrangement of nanoparticles from the gas phase on bacterial surface-protein layers. Appl. Phys. Lett. 90(11), 113–114 (2007)CrossRefGoogle Scholar
  16. 16.
    Ryzhkov, P., Ostermann, K., Rödel, G.: Isolation, gene structure, and comparative analysis of the S-layer gene sslA of Sporosarcina ureae ATCC 13881. Genetica 131(3), 255–265 (2007)CrossRefGoogle Scholar
  17. 17.
    Sára, M., Pum, D., Sleytr, U.B.: Permeability and charge-dependent adsorption properties of the S-layer lattice from Bacillus coagulans E38–66. J. Bacteriol. 174(11), 3487–3493 (1992)Google Scholar
  18. 18.
    Scheicher, S.R., Kainz, B., Köstler, S., Suppan, M., Bizzarri, A., Pum, D., Sleytr, U.B., Ribitsch, V.: Optical oxygen sensors based on Pt(II) porphyrin dye immobilized on S-layer protein matrices. Biosens. Bioelectron. 25(4), 797–802 (2009)CrossRefGoogle Scholar
  19. 19.
    Schultze-Lam, S., Harauz, G., Beveridge, T.J.: Participation of a cyanobacterial S layer in fine-grain mineral formation. J. Bacteriol. 174(24), 7971–7981 (1992)Google Scholar
  20. 20.
    Sleytr, U.B., Egelseer, E.M., Ilk, N., Pum, D., Schuster, B.: S-layers as a basic building block in a molecular construction kit. FEBS J. 274(2), 323–334 (2007)CrossRefGoogle Scholar
  21. 21.
    Sleytr, U.B., Györvary, E., Pum, D.: Crystallization of S-layer protein lattices on surfaces and interfaces. Prog. Org. Coat. 47(3/4), 278–287 (2003)Google Scholar
  22. 22.
    Sleytr, U.B., Messner, P., Pum, D., Sára, M.: Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem. Int. Ed. 38(8), 1034–1054 (1999)CrossRefGoogle Scholar
  23. 23.
    Sleytr, U.B., Sára, M., Pum, D., Schuster, B.: Characterization and use of crystalline bacterial cell surface layers. Prog. Surf. Sci. 68(7–8), 231–278 (2001)CrossRefGoogle Scholar
  24. 24.
    Tang, J., Ebner, A., Kraxberger, B., Leitner, M., Hykollari, A., Kepplinger, C., Grunwald, C., Gruber, H.J., Tampé, R., Sleytr, U.B., Ilk, N., Hinterdorfer, P.: Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy. J. Struct. Biol. 168(1), 217–222 (2009)CrossRefGoogle Scholar
  25. 25.
    Tschiggerl, H., Casey, J.L., Parisi, K., Foley, M., Sleytr, U.B.: Display of a peptide mimotope on a crystalline bacterial cell surface layer (S-layer) lattice for diagnosis of Epstein–Barr virus infection. Bioconjugate Chem. 19(4), 860–865 (2008)CrossRefGoogle Scholar
  26. 26.
    Weiner, C., Sára, M., Dasgupta, G., Sleytr, U.B.: Affinity cross-flow filtration—purification of igG with a novel protein-A affinity matrix prepared from two-dimensional protein crystals. Biotechnol. Bioeng. 44(1), 55–65 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of GeneticsTechnische Universität DresdenDresdenGermany

Personalised recommendations